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Background and objectives: Wheat Hagberg falling number (FN) is a long-

standing quality test that, by means of measuring the viscosity of a heated water-

meal or water-flour mixture, characterizes the activity of endogenous a-amylase,

the enzyme primarily responsible for starch hydrolysis. The accuracy, time

requirement, and cost of this test have come under heightened scrutiny, particu-

larly in seasons when weather conditions have been favorable to preharvest

sprouting or late maturity amylase. Near-infrared (NIR) spectroscopy, an analyti-

cal approach routinely used in the grain industry to measure contents of protein

and moisture, was reexamined as a possible alternative to the FN procedure.

Findings: Partial least squares (PLS) regression quantitative models developed on

a genetically diverse set of Washington grown white wheat demonstrated low

accuracy, with standard errors of performance ranging from 40 to 77 s. Alterna-

tively, linear discriminant analysis and PLS discriminant analysis (PLSDA) quali-

tative models, developed and tested using a FN cutoff (pass/fail) value, also

demonstrated low accuracy, with the best model correctly identifying 67% and

71% of the samples, respectively, above and below a threshold value established

as the median value of FN in a calibration set of several hundred samples.

Conclusions: Replacement of the FN test with one based on NIR spectroscopy

on either whole grain or ground meal for making decisions on segregating wheat

lots according to a-amylase activity is not recommended.

Significance and novelty: Because NIR spectroscopy is not sufficiently accurate

to quantitatively model FN or differentiate low from high FN grain, viscometry pro-

cedures for starch integrity, such as FN, will continue their use in grain commerce.
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1 | INTRODUCTION

The Hagberg falling number (FN) procedure, by means of
one reported value, measures the viscosity of a wheat flour,
wheat meal, or barley meal in water mixture that is agitated

and heated under a controlled regiment. It is used to char-
acterize the activity level of endogenous enzymes, and in
particular, a-amylase, that catalyze starch hydrolysis. Gen-
erally, the food and malt industries prefer that ingredient
grain has low enzyme levels, such that they may control
these levels during processing by addition of malt or by
their own controlled malting regiments. FN provides the
basis for characterizing the amylase level of raw grain, and
because of this it is used in world commerce as either a
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component on official grade, as in the EU, or on contracts
of sale, as in the United States. The procedure entails
weighing a fixed amount of meal, combining this with a
precise volume of distilled water in a dimensioned test
tube, and placing a stirrer of precise geometry and weight
into the tube. The tube is immersed in a boiling water bath
whereupon the stirrer is moved up and down repeatedly for
1 min, during which time the starch gelatinizes and under-
goes enzymatic hydrolysis. At the end of the agitation per-
iod, the stirrer is released at its highest position and the
force of gravity moves the stirrer downward. The elapsed
time, in seconds, from start of agitation until the bottoming
out of the stirrer inside the test tube, is designated as the
FN. The rate of heat transfer (boiling water bath to meal
mixture within tube), starch gelatinization, and enzyme
kinetics through activation and deactivation, all contribute
to the FN time. Typically, sound U.S.-grown wheat will
have FNs of 300 and higher, while wheat that has elevated
a-amylase activity brought on by preharvest sprouting
(PHS) from rain right before harvest or by late maturity
amylase (LMA) from large daily temperature changes dur-
ing grain fill, in extreme cases may have FNs <100 (Farrell
& Kettlewell, 2008; Mares & Mrva, 2014). Successive har-
vests of low FN soft white wheat in spotted locations of
the U.S. Pacific Northwest have renewed attention on the
FN procedure. While it is relatively simple to perform,
equipment necessary for this procedure is expensive
(>20,000 USD) and not perfectly adapted to the first point
of sale, the country elevator. Thus, FN values are not deter-
mined soon enough to allow segregation of low and high
FN wheat lots at the elevator. This leads to financial losses
when low FN grain is mixed with high FN grain. Near-
infrared (NIR) analyzers have enjoyed widespread use at
such locations for over two decades as tools for rapid
analysis of moisture and protein. Hence, the question sur-
faces periodically as to whether the NIR technique may be
used in lieu of FN to prevent mixing of low and high FN
grain at the elevator. Several years have passed since the
first research efforts on developing a proxy for FN by NIR
methodology, during which time advances have
occurred in both NIR instrumentation and chemometric
analysis.

Among other bread-making quality parameters (hard-
ness, SDS sedimentation volume, loaf volume), Starr, Mor-
gan, and Smith (1981) reported on NIR reflectance
calibrations for FN using prevailing technology at the time,
an NIR spectrometer with 19 fixed interference filters and
chemometric analysis consisting of multiple linear regres-
sion (MLR). Using five filters (1,778, 1,818, 1,982, 1,940,
and 2,100 nm), the MLR model produced standard error
for a small calibration set (n = 45) of 26.8 s. However,
when the model was applied to a separate validation set
(n = 43), the standard error rose to 62.3 s. Such a

difference in error led to Starr’s admonishment that NIR
model evaluation should not be performed on calibration
samples alone. Osborne (1984) performed similar analyses
using new spectrometer technology at the time, a scanning
monochromator, which allowed for a continuum of absor-
bance values collected over a range of 1,200–2,400 nm.
With the same type of chemometric analysis as Starr et al.
(1981), Osborne’s overall findings on FN modeling
(n = 52 UK wheat meal samples), with a high standard
error of 73 s on the calibration set, precluded any pursuit
of model validation. More recent investigations have
involved on-combine spectral collection during harvesting
operations for field mapping of FN (Risius, Hahn, Huth,
T€olle, & Korte, 2015) and hyperspectral image analysis of
kernels for a-amylase (Xing, Symons, Hatcher, & Shahin,
2011) or FN (Caporaso, Whitworth, & Fisk, 2017), which
have led to a resurgence of interest in developing an NIR
calibration for FN. Further, urgency in resolving an issue
of a combination of PHS and LMA contributing to low FN
wheat in the U.S. Pacific Northwest in 2016 has prompted
the authors to return to the NIR feasibility question. There-
fore, the objective of this study was to develop and evalu-
ate NIR regression calibrations for FN and, alternatively,
determine the feasibility of using NIR technology for a
pass/fail evaluation of wheat samples about a cutoff value.
While the pass/fail model would not likely serve as a
replacement to a 300 s FN contract specification, if suc-
cessful, the model could allow segregation of low and high
FN grain at the elevator.

2 | MATERIALS AND METHODS

2.1 | Samples

All wheat (soft white winter and soft white spring) sam-
ples were from a subset of the 2016 Washington State
University cereal variety trials as described in Higgin-
botham, Jitkov, and Horton (2016), summarized in
Table 1, and shown by geographical location in Figure 1.
This subset consisted of commercial varieties or advanced
breeders lines grown in research field plots at 16 locations
in central and eastern Washington. Wheat was planted in
plots of 5.0–7.4 m2 arranged in an alpha lattice design
with three replicated plots per entry and harvested with a
small plot combine. Trials were maintained under the
cooperating grower’s management conditions specific to
the trial location including fertilizer application, herbicide
weed control, and fungicide treatment for stripe rust con-
trol. The samples were cleaned and weighed at the
USDA-ARS laboratory in Pullman, WA and sent to the
USDA-ARS Beltsville, MD laboratory in three shipments
(groups) starting in January 2017 and lasting through late
April 2017.
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2.1.1 | Group 1

One hundred ninety-two pure line 10- to 15-g cleaned field
plot samples were delivered to Beltsville in whole kernel
(bulk) format. Samples from 11 of the 12 growing locations
were assigned to calibration development and, as such, these
were drawn from a much larger (super) set with the purpose
of producing a uniform distribution of FN over a large range
(<100–>450 s), as measured by the Pullman laboratory. The
reserved growing location constituted samples that were
selected at random without prior knowledge of their FN val-
ues. At Beltsville, all samples were scanned in NIR diffuse
reflection, first in whole kernel format. After grinding in a
cyclone mill (Udy, Ft. Collins, CO, USA), they were
scanned again, this time as ground meal. Details of the NIR
equipment and methodology appear in a separate section.
FN measurement at Beltsville followed the collection of the
meal spectra. Depending on the amount of meal available,
FN measurements were collected on left and right tube ali-
quots or, for samples <14 g, on just one tube.

2.1.2 | Group 2

One hundred fifty-five 10-g samples (ground meal only)
were sent from the Pullman laboratory to the Beltsville lab-
oratory 3 months after the first group. During the period
between shipments, the group 2 samples were stored as
intact seed at �15°C until being ground into meal immedi-
ately before shipment. The samples were from two growing
locations, with the location containing the larger number, at
101, relegated to calibration development, and the other
location, with 54 samples, reserved for model validation.
As with some of the samples from group 1, FN measure-
ments at Beltsville were performed on a single tube per
sample due to the limited mass of material.

2.1.3 | Group 3

One hundred ninety-seven samples in ground meal format
were delivered to Beltsville 3 weeks after the group 2 sam-
ples. These samples were handled and ground at Pullman

TABLE 1 Structure of soft wheat samples used in near-infrared (NIR) modeling of falling number by quantitative (partial least squares) and
qualitative (linear discriminant analysis) approaches

Group

Calibration set Validation set

n Location
Number of
varieties n Locationa

Number of
varieties

Number of varieties
unique to validation set

1 145 Connell, Harrington, St. Andrews, Anatone,
Creston, Lamont, Reardan, St. John, Fairfield,
Moses Lake, Walla Walla

61 47 Farmington 35 9

2 101 Pullman 53 54 Farmington 24 23

3 153 Almira, Mayview 68 44 Lamont, Plaza,
Walla Walla

22 14

aFarmington samples from group 1 are of different varieties compared with Farmington samples from group 2. Similarly, Lamont samples are of different varieties
between these groups.

FIGURE 1 Growing locations in
Washington State of the samples used in
study, identified by analysis group (1–3)
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in a similar fashion as the group 2 samples. Samples from
the two growing locations that contributed the largest num-
ber of samples, at 153, were assigned to calibration devel-
opment, while 44 samples from three other locations were
reserved for model validation.

2.2 | Near-infrared data collection

Group 1 samples were scanned in whole kernel format and
again in ground meal format. Samples from groups 2 and 3
were scanned in ground meal format only. In all cases,
material was inserted in a 38-mm diameter 9 10 mm
height standard ring cell possessing a quartz window on
the face oriented toward the spectrometer, and a flat rubber
stopper on the opposite face to hold the material in place.
An analytical bench scanning monochromator (Foss
NIRSystems model 6500) with rotating drawer front attach-
ment was used to collect the NIR spectral data. Diffuse
reflection scans (1,100–2,498 nm, every 2 nm) were col-
lected using the default settings of 32 repetitions per scan.
Before each sample scan, a similar scan was made of the
internal reference ceramic material. Sample spectra, refer-
enced to the ceramic, were stored in log(1/R) format. Two
fills of the ring cell were scanned back-to-back, with new
material used in the second fill. Spectra, stored to disk in
the manufacturer’s native software (Vision) binary format,
were later imported into a user-written SAS program that
invoked PROC PLS for initial analysis to optimize spectral
preprocessing (Reeves & Delwiche, 2003). Later, the spec-
tra were imported into the software package Unscrambler
(v. 10.4 Camo, Oslo, Norway) for quantitative and qualita-
tive modeling of FN using the favorable preprocessing con-
ditions.

2.3 | Falling number measurement

Falling number measurements were performed within
2 weeks after the spectral data collection of each group. A
Perten model 1000 instrument with cooling tower was
used. Following the USDA Federal Grain Inspection Ser-
vice directive (FGIS, 2013), meal and water quantities were
7.00 g and 25.0 ml, respectively, for all samples. Meal and
water were combined in a standard FN test tube using the
layering procedure described in Delwiche, Vinyard, and
Bettge (2015) to ensure the complete wetting of meal.
Because the moisture contents of all samples were consis-
tently close to 10%, FN values were recorded on an as is
basis. Approximately half of the group 1 samples possessed
sufficient material for left and right tube assays. Samples
with insufficient material for two tubes were run in tandem
with a dummy sample. Seventy of the dummy sample load-
ings consisted of material from the same grind. The FN
values of these loadings were used to calculate a standard

deviation for the FN procedure and hence establish the
lower limit for standard error of any NIR regression model
for FN.

All samples in group 2 were <14 g, so two samples
were analyzed per FN run. For group 3, nearly all samples
were >14 g, and consequently each sample was analyzed
in left and right tubes, with their average FN used in the
modeling analysis.

2.4 | Spectral analysis

The three groups were first analyzed separately, starting
with group 1 and continuing with the second and third
groups as each became available. Later, similar analysis
was performed on pooled samples from all groups. The
user-written SAS macro program for partial least squares
(PLS) regression, a slight modification of the one described
in an earlier publication (Reeves & Delwiche, 2003), was
used to evaluate the effect of spectral preprocessing and to
compare whole kernel format with ground meal format.
Specifically, 136 trials were run in a loop structure to
examine effects of two common spectral normalization
functions (standard normal variate transformation, with and
without spectral detrending, and multiplicative scatter cor-
rection), three derivative orders (zeroth or smooth, first
derivative, and second derivative, performed according to
Savitzky and Golay’s (1964) convolutions), and 11 convo-
lution window widths for the derivatives (5–25 points,
odd). Program output consisted of a listing of calibration
and validation statistics for each trial, whereupon trials
were ranked by one figure of merit, the root mean square
of differences (RMSD; reference FN minus NIR-predicted
FN) of a leave one out cross-validation. This procedure
was performed on each group, whereupon the rankings
were inspected for any trends in spectral preprocessing per-
formance. Preprocessing conditions that consistently pro-
duced relative favorable model results then became the
settings for in depth analysis in Unscrambler. Once
imported into Unscrambler, the spectra were transformed
according to the optimal preprocessing conditions. Addi-
tionally, a category (class) variable was created, this being
a high–low indicator for when a sample was above or
below a cutoff value. Although 300 s value is often used
by the wheat industry in the U.S. Pacific Northwest as the
point at which wheat lots falling below this value become
discounted, 355 s was selected because it was the median
of the calibration samples pooled from all three groups.
Analysis at the higher value permitted a more balanced set
to perform linear discriminant analysis (LDA) and PLS dis-
criminant analysis (PLSDA), with the assumption being
that if proof of concept could be established at this value,
then the concept would also apply to a lower value, such
as 300 s. Predictor variables for the LDA models were
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principal component scores from the decomposition of the
spectra after the selected optimal preprocessing.

3 | RESULTS AND DISCUSSION

Histograms of FN are shown in Figure 2, with the calibra-
tion set and validation set samples from all three groups
contained in the upper (2a) and lower (2b) graphs, respec-
tively. Also included in these graphs are histograms of
group 1 samples alone as the calibration samples from this
group, by design, had the largest range (62–606 s). The
vertical dashed bars in each graph are situated at 300 and
355 s, where the lower value corresponds to the cutoff
commonly used in U.S. commerce at which a lot may be
discounted or refused when FN falls below the cutoff. The
upper value corresponds to the median value of the all
groups calibration set and, while well within the acceptable
range for a traded lot, is better suited in this study to estab-
lish feasibility of using NIR spectroscopy in qualitative
(categorical) modeling of FN. Because of the deliberate

structuring of group 1 calibration samples, the range is
wider in the upper graph (calibration) than the lower graph
(validation). Raw spectra of the 145 group 1 calibration
samples in bulk and ground meal formats are shown in
Figure 3a,b, respectively. Typical of NIR spectra, a sys-
temic (wavelength region-wide) variation occurs among the
samples, primarily caused by the physical effects of kernel
size in the bulk format and particle size in meal format,
with the latter format producing less variation.

3.1 | Quantitative models

Preprocessing effect results are presented in Figure 4. Clear
from this plot is that the format of the material, intact ker-
nels (bulk) or ground meal, had a direct bearing on PLS
model error, with meal demonstrating typically about half
the error as intact kernels. This analysis was conducted on
the group 1 samples alone, and because of the clear inferi-
ority of the bulk format, the two subsequent groups were
analyzed as ground meal only. Also evident in this figure
is that once the 25 worst preprocess conditions were
removed, the remaining ones showed only slight
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differences in error. For each preprocessing condition, the
ensuing PLS regression equation was based on no more
than 15 factors (and often, fewer than 15), for which the
cross-validation was at a minimum or the difference
between the error at the minimum factor number and the
error at a smaller factor number was not statistically signifi-
cant (Reeves & Delwiche, 2003). Although this figure does
not indicate the preprocessing condition with each trial
number, a general trend was observed when this analysis
was applied to the other two groups. In general, normaliza-
tion either by SNV (with or without a post application of
spectral detrending) or MSC was beneficial. Secondly, a
wider convolution width for the Savitzky–Golay convolu-
tion window was beneficial regardless of derivative order.

Lastly, the second derivative preprocessing tended to pro-
duce models with lower error than either the smoothing or
first derivative preprocessing. Taking these observations
into consideration, one preprocessing condition was
selected for all further analysis, this being SNV with no
detrending, followed by a 15-point second derivative. The
number of factors was set at seven for individual group
analyses and both seven and 11 for the pooled group anal-
yses.

The PLS regression results are summarized in Table 2.
Included in this table are the ranges and standard devia-
tions for the reference FN measurements, separated by cali-
bration and validation sets. Judging from the calibration
set alone, the best model, based on goodness of fit,
occurred with the group 1 samples, in which the R2 was
.708. This value was noticeably greater than those of the
other groups (R2 of .533 and .375), most likely because the
samples for the group 1 calibration were purposely selected
to span a very wide FN range (62–606 s). However, even
with this wider range, the ratio of SD to RMSD, a dimen-
sionless indicator of the goodness of a model, at 1.56, was
low for NIR modeling purposes (Williams & Sobering,
1993). The corresponding ratios for groups 2 and 3, at 1.12
and 1.06, were even lower. The expansion of the calibra-
tion set to 399 spectra, accomplished by pooling all groups,
resulted in very poor modeling statistics as well, with R2

values of .371 and .541 for the 7- and 11-factor models,
respectively, and SD to RMSD ratios on par with group 2.
Overall, the calibration set RMSD values ranged from 29
to 68 s, with the magnitude depending on the distribution
of FN used in the calibration. Group 1, having the broadest
distribution (SD = 107 s), produced the largest RMSD. By
contrast, group 2, with the narrowest distribution in FN,
produced the smallest RMSD (28.7 s). However, at 29 s,
even this value is very large compared with the standard
deviation of the repeated runs (n = 70) of the dummy sam-
ple in group 1 (the best estimate of the lowest possible

PLS trial number (ordered highest to lowest RMSD)
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FIGURE 4 Partial least squares (PLS) model performance as
defined by the root mean square of differences (RMSD) of near-
infrared (NIR) modeled (on ground meal and bulk kernel formats)
and actual falling number values in a one-sample-out cross-validation
of the group 1 calibration set at various trials of spectral
preprocessing (normalization, detrending, smooth, first derivative,
second derivative, and convolution window size used in the smooth
and derivative operations)

TABLE 2 Summary of partial least squares regression modeling of falling number

Group

Calibration set Validation set

n Range (s) SDa (s) Factors R2b RMSDc (s) n Range (s) SDa (s) SEPd (s) Biase (s)

1 145 62–606 107.1 7 .708 68.5 47 276–472 39.5 42.8 �142.6

2 101 264–435 32.3 7 .533 28.7 54 238–455 48.0 39.9 �6.2

3 153 151–434 51.5 7 .375 48.8 44 194–433 54.3 55.9 �9.9

1–3 399 62–606 75.3 7 .371 65.7 145 194–472 50.8 77.4 �64.3

1–3 399 62–606 75.3 11 .541 66.0 145 194–472 50.8 58.3 �55.4

aStandard deviation of falling number measurements of respective set (calibration or validation) as measured by falling number procedure.
bCoefficient of determination of regression equation developed on calibration set.
cRoot mean square of differences (RMSD) (actual—modeled) from a one-sample out cross-validation of the calibration set.
dStandard error of performance (= standard deviation of differences) from application of regression equation onto the validation set.
eDifference in means of modeled and actual values of validation set.
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value for NIR model error), which was 7.1 s. Hence, not
even the best model reported in Table 2 would be satisfac-
tory for use as a replacement for the FN procedure.

For visual representation purposes, plots of reference vs.
NIR FN values are shown for a 7-factor PLS model devel-
oped on group 1 samples in the left column of Figure 5
(graphs a–c). In general, for good models, the cross-valida-
tion scatter plot will not be substantially different from the
calibration plot. In Figure 5, the amount of dispersion from
the line of perfect fit (the 45° line) is slightly greater in the
cross-validation graph (b) than in the calibration graph (a).
Although the clustering of points about the 45° line in the
calibration graph (and to a lesser extent in the cross-valida-
tion graph) may signify some power of the NIR model,
this, to a certain extent, is arising from a random fitting of

the model to the prevailing spectral and reference values.
To illustrate this point, a second calibration graph (d) is
included in Figure 5. This graph was produced by a 12-
factor PLS model in which the FNs in group 1 were no
longer affixed to their true spectra, but instead were ran-
domly assigned to the spectra. The clustering of points
along the 45° line demonstrates the trap of presenting
model findings without validation. In this case of fictitious
data (graphs d–f), it is seen that the trending of samples
along the 45° line disappears with cross-validation (graph
e) and is completely absent with the validation set (graph
f). Lastly, the plot of true reference vs. NIR values of the
validation set, as seen in graph c, confirms the lack of NIR
modeling ability for FN. The large bias (�143 s) is also
suggestive of a lack of model robustness. Thus, despite the
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use of regression algorithms that were generally not avail-
able in the early 1980s, the current quantitative model
results are no better than those of Starr et al. (1981) or
Osborne (1984). Limiting the wavelength region in the
PLS regressions to only the lower half (1,100–1,798 nm),
or by removal of the 1,900–2,000 nm water absorption
region, did not improve the model results.

3.2 | Qualitative models

Using the same preprocessing conditions as chosen for the
quantitative models (i.e., SNV, 15-point second derivative),
the results of the classification trials for the upper cutoff
(355 s) are presented in Table 3. Of the three LDA classi-
fier metrics examined, Mahalanobis distance was best, with
61 of the 104 high samples (58.7%) correctly classified and
32 of the 41 low samples (78.0%) correctly classified.
Expressed as total correct/total number, the correctness
ratio was 64.1%. This ratio is slightly less than that for an
11-factor PLSDA model (total = 68.3%, with high = 67.3%
and low = 70.7%). A graphical representation of the chal-
lenging nature of low vs. high classification is shown in a
factor 2 vs. factor 1 scores plot of the PLSDA model (Fig-
ure 6), in which there is no clear boundary that separates
low (<355 s) from high (>355 s) samples. In fact, the only
clustering evident in this figure arises from an environmen-
tal effect, sample grouping, with all group 1 samples situ-
ated on the left region of the graph, as identified by a
dashed boundary. Score plots involving all other combina-
tions of factors (not shown) were also incapable of separat-
ing low and high FNs.

As mentioned earlier, it is assumed that comparable per-
formance would have been obtained if the median value in
the calibration set was lower, for example at 300 s.
Because all correctness rates fall very short of an accept-
able value for commerce, for example, 95% or higher, the
qualitative modeling results of this study, similar to quanti-
tative modeling results, are not encouraging. Thus, it does
not appear that NIR spectroscopy can be used to differenti-
ate low from high FN grain at the elevator for making
decisions on binning.

3.3 | Why the limitation

Preharvest sprouting is the most common cause of elevated
a-amylase levels in wheat grain. Rainy conditions before
harvest can lead to the onset of seed germination, where-
upon gibberellic acid is released by the embryo which then
initiates the de novo synthesis of a-amylase (Singh &
Kayastha, 2014). A possible reason why the bulk spectra
produced poorer NIR models was the lack of homogeneity
of the scanned seeds compared to that of the ground meal.
Under mildly unfavorable weather conditions that cause a
very small fraction of seeds to break dormancy, these seeds
are randomly distributed throughout a bulk sample during
the NIR scanning operation. The resulting spectrum will
reflect the kernel-to-kernel spatial variability of the chemical
constituents, including a-amylase. Conversely, the grind pro-
cess produces a more homogeneous material that is pre-
sented to the spectrometer, such that the a-amylase that was
localized to the germinated kernels is now spread throughout
the meal. However, the underlying assumptions to this pos-
tulate are that (i) a-amylase is at a sufficiently high concen-
tration to be detectable by NIR spectroscopy and (ii) the
molecular structure of a-amylase is spectroscopically distin-
guishable from that of the endosperm storage proteins, the
overwhelming source of seed protein, as well as that from
proteins contained in the embryo and aleurone layer. The
isoform of the cereal a-amylase molecule synthesized during
germination, and best studied in barley, consists of 403
amino acid residues folded into three domains, with the

TABLE 3 Summary of linear discriminant analysis and partial
least squares discriminant analysis (PLSDA) models of falling number
applied to the validation samples from all three groups (n = 145)

Classifier
function

High samples (≥355 s)
correctly classified (%)

Low samples (<355 s)
correctly classified (%)

Linear 45.2 75.6

Quadratic 55.8 78.0

Mahalanobis 58.7 78.0

PLSDA 67.3 70.7

Factor 1
–0.002 –0.001 0.000 0.001 0.002 0.003

Fa
ct

or
 2

–0.002

–0.001

0.000

0.001

0.002

0.003

low
high

FIGURE 6 Scores plot of the pooled groups 1–3 calibration set
partial least squares discriminant analysis of a two-class model
(spectral preprocessing: SNV, Savitsky-Golay 2nd derivative, 15-point
window). Classes: low-FN <355 s, high-FN >355 s. Dashed ellipse
encapsulates group 1 samples. FN, falling number
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largest domain containing 286 residues in a (ba)8-barrel for-
mation which houses the active-sites for starch hydrolysis
(Kadziola, Abe, Svensson, & Haser, 1994). NIR spec-
troscopy is based on a measurement of the combination and
overtone band vibrational frequencies arising from inter-
atomic bonds of atoms of low mass such as C, N, O, and
H. Although collectively sensitive to protein by a conglom-
eration of the N-H bond vibrations, the sensitivity of the
NIR response to individual amino acids is quite challenging.
As challenging is the feat of assigning spectral characteris-
tics of amino acids to protein units, be they endosperm stor-
age proteins, embryo proteins, or enzymes. With these
conditions taken together, it is not surprising that FN
inferred by NIR spectroscopy is tenuous at best.

4 | CONCLUSIONS

Based on the evaluation of a diverse set of soft white
wheat, NIR spectroscopy models for FN, either in the form
of quantitative prediction of the value or a qualitative pre-
diction of a low–high decision around a cutoff, are not suf-
ficiently accurate to act as replacements for the method
itself.
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