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Abstract
Multienvironment trials provide useful information about highly variable, complex

plant traits like yield and quality but are difficult to analyze due to their frequently

unbalanced nature, with genotypes and locations varying from year to year. Our objec-

tive was to use multiple approaches, including joint regression and principal com-

ponents analysis, to characterize patterns in the genotype × environment interactions

across an unbalanced 3-yr multienvironment wheat (Triticum aestivum L.) variety trial

dataset, examining falling number (FN) test results in wheat. The FN test measures

the decrease in flour gelling capacity resulting from starch digestion by the enzyme

α-amylase. Low FN and high-α-amylase grain is discounted because it is associated

with poor end-use quality. Low FN can be caused by susceptibility either to preharvest

sprouting when it rains before harvest or to late-maturity α-amylase induction by tem-

perature fluctuations during grain maturation. The most effective and visually intu-

itive approach for selecting varieties with high FN across variable environments was a

combination of joint regression, such as Finlay–Wilkinson and Eberhart and Russell,

with biplot methods such as the additive main effects and multiplicative interaction

model (AMMI) and the genotype main effects and genotype × environment interac-

tion model (GGE). We identify stable lines for FN resistance and provide a means to

analyze unbalanced, multienvironment data from breeding and variety trials.

1 INTRODUCTION

The wheat (Triticum aestivum L.) industry uses the Hagberg–

Perten falling number (FN) test to measure starch degradation

Abbreviations: AMMI, additive main effects and multiplicative interaction

model; BLUP, best linear unbiased predictor; FN, falling number; G × E,

genotype × environment; GGE, genotype main effects and

genotype × environment interaction model; LMA, late-maturity α-amylase;

PC, principal component; PCA, principal component analysis; PHS,

preharvest sprouting; WSU, Washington State University.
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caused by α-amylase enzyme activity in flour (Perten, 1964;

Yu et al., 2015). Alpha-amylase is produced during seed ger-

mination to mobilize stored reserves to fuel seedling growth.

However, high grain α-amylase resulting in low FN is asso-

ciated with poor-quality baked goods (Farrand, 1964; Kruger

& Lineback, 1987). Thus, farmers receive steeply discounted

prices for low-FN grain. To help farmers choose varieties less

prone to low FN, >12,000 FN data points have been collected

by researchers from Washington State University (WSU)

Extension Cereal Variety Testing and the USDA-ARS since

2013 and made publicly available (www.smallgrains.wsu.edu,
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www.steberlab.org). Within this large dataset, the relative

ranking of varieties by FN value varied greatly with loca-

tion and year, in part because low FN can be caused by

genetic susceptibility to two different forms of environmen-

tal stress, preharvest sprouting (PHS) and late-maturity α-

amylase (LMA).

The primary goal of the current study was to explore mul-

tiple approaches to assess the relative performance of vari-

eties while considering the complex genotype × environment

(G × E) interactions controlling FN. The secondary goal was

to assess these simple and visually intuitive approaches for

their utility in helping scientists and farmers to see patterns in

the data. The WSU Extension Cereal Variety Testing program

provides comprehensive adaptation and performance infor-

mation on small-grain varieties (comprising released culti-

vars and advanced breeding lines, which we will hereafter call

either varieties or genotypes) across growing regions of east-

ern Washington to growers, industry, and breeding programs.

However, interpretation of data for traits like FN is further

complicated by the highly unbalanced nature of variety trials.

Locations and genotypes change from one year to the next as

the breeders submit new varieties and growers’ preferences

shift. Analysis methods for such multienvironment trials have

evolved over the years. The original and most basic method

of multienvironment trial data analysis used an ANOVA to

split the variance into four components: genotype, environ-

ment, G × E interaction, and within-trial variation. Although

this analysis is useful to partition the total variance into com-

ponents due to genotype, environment, and the G × E interac-

tion, it suffers from a lack of insight into how specific varieties

respond to specific environments or to groups of similar envi-

ronments (Kempton, 1984).

To more fully examine the G × E interaction, Finlay

and Wilkinson (1963) developed a joint regression analysis

where a genotype’s performance in individual environments

was regressed onto an environmental index of the overall

effects of the environments that make up the trial. The index

was usually defined as the mean performance of the geno-

types in that environment. Further breakdown of the G × E

interaction was introduced by Eberhart and Russell (1966),

who defined genotype stability as the residual variance of

a genotype from the slope of the Finlay–Wilkinson regres-

sion. Lin, Binns, and Lefkovitch (1986) described three types

of stability:

Type 1: A genotype is considered stable if the variance is

small among environments.

Type 2: A genotype is considered stable if its response to envi-

ronments is parallel to the mean response of all genotypes in

the trial.

Type 3. A variety is considered stable if its residual mean

square from the regression model on the environmental

mean is small.

Finlay–Wilkinson regression can be interpreted as Type 1

or 2, depending on the definition of a standard stable geno-

type. If stable genotypes are defined by having a slope of one,

then Type 2 is implied, but if they are defined as a slope

of zero, then Type 1 is implied. The Eberhart and Russell

method measures Type 3 stability. Type 3 stability measures

the unpredictable component of stability. Although Eberhart

and Russell (1966) argue that this is the true definition of sta-

bility, Lin et al. (1986) explain that without using actual envi-

ronmental factors as an environmental index in a prediction

model, Type 3 measures of stability are least likely to reflect

actual genotypic stability.

More recently, it has been common practice to group

environments within large multienvironment trials by mega-

environments defined by some phenotypic or environmen-

tal pattern. The mega-environment concept has been used

to describe global target environments (Braun, Rajaram, &

Ginkel, 1996; Crespo-Herrera et al., 2017; Rajaram, van

Ginkel, & Fischer, 1995). If mega-environments are consid-

ered to be environmental factors, then it is valid to use the

Eberhart and Russell method as an estimate of stability within

mega-environmental groups.

In unbalanced datasets, there are two problems with tradi-

tional linear regression approaches to stability analyses such

as the Finlay–Wilkinson regression. Environmental effects

may be determined with bias when different genotypes are

grown and then used to compare environments. In addition, a

similar problem of bias arises when using genotype means to

estimate environmental effects and then using those effects to

determine genotype stability parameters. Bias in the estima-

tion of fixed genotype and environment effects was solved by

using a Bayesian approach. Using this approach to the Finlay–

Wilkinson regression, genotypes and environments are treated

as random rather than fixed variables, incorporating estimates

of genotypic and environmental covariance and experimen-

tal error into the estimates for genotype stability and envi-

ronment indices (Lian & de los Campos, 2016; Su et al.,

2006). The additive main effects and multiplicative interac-

tion model (AMMI) and the genotype main effects and geno-

type × environment interaction model (GGE) used principal

components (PCs) to discern patterns in the G × E interaction

(Gauch, 1992; Kempton, 1984). Graphical representations of

PC results provided an instinctual way to understand G × E

interactions (Yan, Hunt, Sheng, & Szlavnics, 2000).

These statistical methods are useful for comparing how

the FN of specific genotypes respond to the environment

because low FN and high α-amylase can result from genetic

susceptibility to two environmental problems, PHS and the

developmental defect LMA (reviewed by Mares & Mrva,

2014). The FN test is used to measure the presence of α-

amylase in wheat. In LMA, α-amylase is induced in response

to cold or high temperature shock during grain filling (approx-

imately 24–28 d past anthesis). Preharvest sprouting, the

http://www.steberlab.org
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germination of mature grain on the mother plant when cool,

rainy conditions occur before harvest, is also associated with

elevated α-amylase. Although advanced cases of PHS obvi-

ously result in the emergence of a seedling root, mildly

sprouted grain and LMA-affected grain cannot be detected

by the naked eye. Alpha-amylase can be produced early in

the germination process, before seedling growth is obvious

(Lunn, Major, Kettlewell, & Scott, 2001). The performance

of varieties in an LMA environment is not predictive of how

they will perform in a PHS environment. Moreover, ANOVA

of the entire FN dataset suggested that genetics accounted for

a very low proportion of the total variability (Garland Camp-

bell, unpublished data, 2017). This is likely due to the G × E

interaction and the fact that PHS and LMA have different

mechanisms of resistance (Mares & Mrva, 2008). With good

experimental design and analysis to control and identify envi-

ronmental effects, this is a trait that has genetic variation that

can be identified and manipulated.

This study aims to utilize joint regression and biplot anal-

yses, as described, (i) to interpret the G × E interaction con-

tributing to the variation in FN, (ii) to determine the relative

importance of sources of variation in the FN data, and (iii)

to provide farmers and breeders with information on which to

base their variety selections. By using these methods to under-

stand FN, we provide the basis to apply it to other unbalanced,

extremely variable datasets.

2 MATERIALS AND METHODS

2.1 Plant material and cultural data

One hundred and thirty-three unique soft white winter wheat

genotypes consisting of released and unreleased cultivars and

breeding lines from the University of Idaho, WSU, Oregon

State University, Limagrain, WestBred/Monsanto, USDA-

ARS, and Syngenta were evaluated in 2013, 2014, and 2016.

The genotypes were grown by the WSU Cereal Variety Test-

ing program as described by Guy, Jitkov, Lauver, and Horton

(2013, 2014) and Higginbotham, Jitkov, and Horton (2016).

Briefly, the field trials were conducted as winter cropping

systems (planted in fall and harvested in late summer) at 17

locations in 2013 and 18 locations each in 2014 and 2016.

These were years in which Pacific Northwest farmers experi-

enced economic losses due to low FN. Field locations (Sup-

plemental Figure S1) were spread across different climatic

regions of Washington State based on average annual rain-

fall. Varieties were grown under rainfed conditions except

for two irrigated locations, Moses Lake and Pasco, in all

3 yr. At each location, grain yield was evaluated in an α-

lattice design with three replications. Field plot size ranged

between 16 and 29 m2 with sowing density from 56 to 106 kg

ha−1 and row spacing of 15 to 38 cm, depending on the

location. All locations were planted according to standard

recommended agronomic practices for winter wheat in the

inland Northwest (http://smallgrains.wsu.edu). All plots were

planted with small plot planters and harvested with a Winter-

steiger plot combine. Trial location and management details,

plus yield and agronomic data including heading and harvest

dates, and location notes are available at http://smallgrains.

wsu.edu.

2.2 Falling number test

The FN test detects the digestion of starch in wheat meal

based on the resulting decrease in starch gelling capacity,

by measuring the time it takes (in seconds) for a stirrer to

fall through a heated flour–water slurry. The FN values were

determined with the Hagberg–Perten FN Apparatus 1800

(Perten Instruments) using the ICC 107/1 method (1995) with

minor modifications as described in Martinez et al. (2018).

Grain was harvested from each plot, and 40-g samples were

milled into whole meal on an Udy sample mill (Udy Cor-

poration). A whole grain meal sample corresponding to 7 g

at 14% moisture was used to run one FN test per sample.

The number of plots sampled per genotype and environment

varied between one and three biological replicates, such that

there were three replicates per genotype in 14 environments,

two in 36, and one in three environments. The number of

replications tested in each environment was dictated by the

resources available at the time of data collection (Supple-

mental Table S1). The nature of the sampling was such that

the α-lattice design of the field was not maintained in the

testing of FNs, so replication was the only factor fitted into

the models described below. For all instances where there

was only one replication, that one replication was used in

the analysis.

2.3 Mega-environment characterization

Although mega-environments are generally defined as areas

with similar biotic and abiotic stresses, this study adapted the

concept to categorize the trial mega-environments likely to

cause low FN based on weather data suggesting conditions

associated with LMA and PHS. Three mega-environments

were identified:

1. No Event: trials where no weather event associated with

PHS or LMA was observed,

2. PHS: trials where precipitation occurred when grain was

mature (up to 2 wk prior to harvest).

3. LMA: trials experiencing heat shock or cold shock during

late grain maturation between 28 and 35 d after heading,

approximately 23 to 30 d past anthesis.

http://smallgrains.wsu.edu
http://smallgrains.wsu.edu
http://smallgrains.wsu.edu
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When both LMA and PHS weather conditions were

observed, the trial was categorized as PHS. Weather data

including maximum and minimum daily temperature (◦C) and

daily precipitation (cm) from WSU’s agricultural weather sta-

tion, AgWeatherNet (www.agweathernet.com), were used in

combination with heading date and harvest date to catego-

rize each trial into one of the three mega-environments. For

example, Creston 2016 was determined to be affected by LMA

because the temperature dipped and then spiked abruptly dur-

ing the susceptible window of LMA induction, 28 to 35 d after

heading (Supplemental Figure S2).

2.4 Mixed linear model and heritability
estimates

The full dataset was analyzed initially using a standard linear

model as

𝑌𝑖𝑗𝑘𝑙 = μ + 𝑉𝑖 + 𝐸𝑗 + VE𝑖𝑗 + 𝑅(𝐸)𝑘(𝑖) + 𝑒𝑖𝑗𝑘 (1)

where Y was the plot FN, μ was the mean (intercept), Vi was

the genotype effect, Ej was the environment (location × year)

effect, VEij was the environment × genotype interaction,

R(E)k(i) was the replication effect within each environment,

and e was the residual variance (Supplemental Table S2). All

effects were considered random. Best linear unbiased pre-

dictors (BLUPs) were obtained for all random effects, fur-

ther serving to account for the unbalanced nature of the data

(Piepho & Mohring, 2007).

Then, an extended model was fit that incorporated mega-

environment as a fixed effect:

𝑌𝑖𝑗𝑘𝑙 = μ +𝑀 + 𝑉𝑖 + 𝐸𝑗 + VE𝑖𝑗 +ME𝑖

+ 𝑅(𝐸)𝑘(𝑖) + 𝑒𝑖𝑗𝑘 (2)

where MEi was the environment × mega-environment inter-

action. All components were considered to be random as

above, except M, which was the fixed effect of the mega-

environment. A Wald test was used to test the significance

of mega-environment as an explanatory variable (Kenward

& Roger, 1997). Predictions were obtained for genotype

response within each mega-environment, and pairwise differ-

ences were calculated.

Variance was estimated for all components within genotype

and environment using the standard model (Eq. [1]), and the

extended model was used to incorporate mega-environment

as a fixed effect (Eq. [2]). Packages used for these analyses

included the asremlPlus package in ASReml-R, lme4, agrico-
lae, fw, coda, and gge in R version 3.5.1.

Heritability was estimated based on BLUPs using the gen-

eralized method of Cullis, Smith, and Coombes (2006). This

estimate uses the concept of “effective error variance” intro-

duced by Cochran and Cox (1957) and was computed as

�̄�2
c = 1 −

�̄�BLUP
2σ2g

(3)

where �̄�BLUP was the mean variance of a difference between

two BLUPs, and σ2g was the variance component attributed to

the variety effect, both calculated from Eq. (1).

2.5 Stability analysis

For this unbalanced dataset, the Bayesian method for the

Finlay Wilkinson regression as proposed by Su et al. (2006)

was used because it reduced potential biases. The model,

𝑝 (𝑦| θ) = ∏
𝑖𝑗𝑘

𝑁
(
μ + 𝑉𝑖 + 𝐸𝑗 + 𝑏𝑖𝐸𝑗, σ2e

)
(4)

where p(y|θ) was the conditional distribution of the data,

given the parameters; θ represented the collection of

unknowns (θ = {μ, V, b, E, σ2V, σ2b, σ2E, σ2e}), 1 + bi was

the expected change in performance of the ith variety per unit

change in the environment effect, and σ2V, σ2b, σ2E, and σ2e were

the variance components for each parameter defined above.

The arithmetic mean FN was calculated for each genotype per

environment and used as the response variable in the model.

The Gibbs sampler method available in the FW package was

used to estimate features of the posterior distribution. Further

details about the model are described in Lian and de los Cam-

pos (2016). From this model, the slope and intercept were

taken as a measure for adaptability and for general perfor-

mance, respectively (defined above as the Finlay–Wilkinson

stability parameters Type 1 and Type 2). The residual vari-

ance of a genotype from the regression line, bi, indicated how

stable a genotype is (defined above as the Eberhart and Rus-

sell stability parameter, Type 3). Thus, a Bayesian analysis of

the data produced estimates of Finlay–Wilkinson and Eber-

hart and Russell stability parameters for the combined dataset

and within each mega-environment. The Finlay–Wilkinson

model was used to analyze the entire dataset first, then with

only environments characterized as LMA or PHS affected.

Although the Finlay–Wilkinson regression approach used

staged fitting, the AMMI model provided joint estimates of its

parameters by combining ANOVA and principal component

analysis (PCA) (Crossa, 1991; Gollob, 1968). The AMMI

model was used to estimate the variety effects in each envi-

ronment. After the variety and environment effects were fit-

ted, the PCA was used to fit multiplicative effects for G × E

interaction. The AMMI model was

𝑌𝑖𝑗 = μ + 𝑉𝑖 + 𝐸𝑗 +
𝑛∑

𝑘=1
λ𝑘α𝑖𝑘γ𝑗𝑘 + 𝑒𝑖𝑗 (5)

http://www.agweathernet.com
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where λk was the square root of the eigenvalue of the PCA

axis k, αik and γik were the PC scores for PCA axis k of the

ith genotype and the jth environment, respectively. An F test

at 0.05 probability calculated using the mean square of each

PC was used to identify the PCA axes that were significant

(Crossa, 1990; Purchase, 1997).

The AMMI stability value was calculated using Eq. (6),

adapted from Purchase (1997).

AMMI Stability Value =
√

SSPC1
SSPC2

(PC1)2 + (PC2)2 (6)

In this formula, SS was the sum of squares, PC1 was the

interaction of PCA 1, and PC2 was the interaction of PCA 2.

Higher AMMI’s stability values indicated more stability.

Although the AMMI model produced another measure of

stability across environments, the GGE biplot summarized the

genotype and G × E interaction effects graphically (Kempton,

1984). The GGE biplot model was standardized using a scal-

ing factor, sj, which was the standard error in environment j:

𝐏𝑖𝑗 =
𝑦𝑖𝑗 − μ − 𝑉𝑗

𝑠𝑗
=

𝐸𝑖 + VE𝑖𝑗

𝑠𝑗
(7)

In this case, yij was defined by Eq. (1) and Pij was a

matrix that was subjected to PCA, which broke down a two-

way table of genotypes and environments into respective PCs.

The arithmetic mean FN was calculated for each genotype

per environment and used as the response variable in the

model. The R packages gge and agridat were used to pro-

duce the biplots (Wright & Laffont, 2018). The fit of the GGE

biplot was diagnosed using patterns described in Yan, Kang,

Ma, Woods, and Cornelius (2007), who explained that the

adequacy of the biplot is reflected in the presence of clear

patterns. The GGE biplot made with the complete dataset

was complicated to analyze. High correlation was observed

between LMA and PHS mega-environments, as evident in

the angle between environmental vectors within a biplot (Yan

& Tinker, 2006). Vector lengths of PHS mega-environments

were longer compared with LMA mega-environments in

the combined biplot, indicating that more effective selection

for resistance to low FN can be done within PHS mega-

environments. With that in mind, interpretations from a GGE

biplot containing only PHS mega-environment data were

reported here.

To compare the various stability statistics calculated for

this dataset, the methods used in this study were compared

by constructing a biplot of the first two components of a PCA

of the variety stability estimates from each model.

3 RESULTS

3.1 Phenotypic data analysis

The distribution of FN data by location showed that those

environments characterized as LMA or PHS had widespread

incidence of low FN (Figure 1, Table 1). The range in FN val-

ues within environments was large (Supplemental Table S3),

but when observed by mega-environment, the ranges were

generally greater for the LMA and PHS environments than

the No Event environments. Visual inspection revealed that

the FN range in PHS environments seemed to extend lower

than in the LMA environments, and pairwise comparisons

of means between PHS and LMA mega-environments indi-

cated that there was no significant difference between them

(p = 0.603) (Table 2). Only a small increase, twofold, was

observed in error variance among environments, demonstrat-

ing that the majority of environments had a similar amount

of unexplained error and that differences in coefficient of

variation were primarily due to differential genetic variabil-

ity within environments. The dataset was highly unbalanced,

with pairs of environments sharing between 4 and 60 varieties,

an average of 24, and a median of 19 varieties (Supplemental

Figure S3). This low connectivity likely affected our calcula-

tion of variance for G × E interaction.

3.2 Variance components

To examine the effects of two models (Eq. [1] and [2]) on the

distribution of variation in these experiments, variance com-

ponents were estimated, and their percentage of total varia-

tion was compared (Table 2). All variance components were

highly significantly different from zero (p < 0.001), and for

the extended model, the fixed effect, mega-environment, was

also significant (p < 0.001). Most of the phenotypic variation

was attributed to the differences among environments, repre-

senting almost half of the total phenotypic variance in the st-

andard model. The genotypic variance component was the

next most important and increased slightly from 18.2% in the

standard model to 21.1% in the extended model. The reduc-

tion in magnitude of the environmental variance component

in the extended model was due to the incorporation of some of

the environmental variance into the mega-environment fixed

effect. Variance due to the G × E interaction was lower in both

models than the genotype and environment main effects but

still represented 14 to 16% of the total phenotypic variance.

Although the residual variance was slightly lower in the stan-

dard model (−5.8%), the generalized heritability improved

from 0.55 in the standard to 0.64 in the extended model

due to the incorporation of mega-environment effects in the

extended model.
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F I G U R E 1 Distribution of falling number data by environment, colored by mega-environment (red = late-maturity α-amylase [LMA],

blue = preharvest sprouting [PHS], and green = No Event). The red dashed line indicates 300 s, the point below which discounts on grain are

usually incurred

T A B L E 1 Decomposition of Washington State University Cereal Variety Testing Program winter wheat trials data based on mega-environment

and incidence of low falling number (FN)

Year No. of locations No. of varieties No. of locations with FN below 300 s No. of locations with PHSa No. of locations with LMAb

2013 17 65 12 9 1

2014 18 72 10 4 2

2016 18 78 18 7 8

aPHS, preharvest sprouting.
bLMA, late-maturity α-amylase.

3.3 Finlay–Wilkinson regression

A Finlay–Wilkinson regression was performed to examine

G × E interaction by assessing the performance of individual

genotypes in relation to environment effects. This approach

fits the best linear regression of the performance of a vari-

ety on the mean environment value over all genotypes in that

environment. The slope of the line is used to approximate

genotype-specific environmental stability. Variance compo-

nents obtained from the Finlay–Wilkinson analysis (Eq. [4])

revealed that the majority of phenotypic variation was due to

residual (error) regardless of whether the dataset was com-

bined or categorized into mega-environment (Supplemental

Table S4). The credibility intervals (analogous to confidence

intervals) and mean for the genotypic and G × E variances

were larger within the PHS and LMA mega-environments

than in the No Event or combined dataset because environ-

mental conditions in the PHS and LMA mega-environments

resulted in separation of varieties for response to the FN test.

When the varieties with the three highest (WB 456, Coda,

and WB 1376CLP) and lowest (4J071246-1C, WA 8251, and

WA 8226) BLUP values (y intercept in the graphs in Fig-

ure 2) for genotype effect were compared across the entire set

of environments (Figure 2a), the range in slope was greater

among the varieties with the highest BLUP values. Two of

those varieties, WB 456 and WB 1376CLP, had a slope of less

than one, indicating low genotypic sensitivity or better abil-

ity to maintain high FN even under LMA and/or PHS condi-

tions. However, the other variety, Coda, had a slope of greater

than one. The three varieties with the lowest BLUP values

had similar slopes of greater than one. In contrast, when the

No Event data were removed from the analyses (Figure 2b),

the three varieties with the highest BLUP values (KWS 040,

WB 456, and WB 1376CLP) had slopes less than one, and

the three varieties with the lowest BLUP values (WA 8251,

WA8226, and 4J071246-1) had slopes much greater than one.

Thus, varieties can be characterized by their overall genetic

effect (high or low BLUP values, y intercept) and by their

responsiveness (slope).

3.4 Eberhart and Russell stability

The Eberhart and Russell method was used to estimate

stability, values that showed a broad range across mega-
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T A B L E 2 Mixed model analysis of 2460 falling number (FN) data points (estimated variance components from Equations [1] and [2]). The

percentage of phenotypic variation explained by the model is given (% of phenotypic)

Standard Extendeda Standard Extendeda

Term Decomposition s2 % of phenotypic
Variety variety 789.8*** 788.8*** 18.2 21.1

Mega-environment PHS − −69.01***b − −
LMA − −62.91b − −

Environment Environment 1809.2*** 784.7*** 41.7 23.9

Environment(rep)c 278.5*** 271.8*** 6.4 8.4

Variety.mega-environmentd Variety.mega-environment − 147.7*** − 4.5

Variety.environmente variety.environment 614.5*** 531.5*** 14.2 16.3

Error error 845.3*** 841.0*** 19.5 25.8

***Significant at the 0.001 probability level.
aPairwise difference from the No Event mega-environment.
bNo significant difference between preharvest sprouting (PHS) and late-maturity amylase (LMA) mega-environments.
cReplication effect within each environment.
dMega-environment × variety interaction.
eEnvironment × variety interaction.

F I G U R E 2 The performance of six varieties selected based on genotype values from Eq. [1] (a) with the whole dataset and (b) with the No

Event locations removed. The six varieties are composed of the three highest and lowest (a) best linear unbiased predictor (BLUP) and (b) best linear

unbiased estimate (BLUE) values to reduce complexity in making inferences about individual varieties. Fitted values are represented by the lines and

cell means of genotype, and environment combinations are represented by the circles, each color indicating a variety. The dashed line has a slope

equal to one. The slope (b) of each variety is given

environments (Supplemental Table S5). The greater the value,

the less stable a variety was. The largest mean, standard devi-

ation, and range was observed for PHS environments, whereas

the No Event environments had the smallest values for all

three measurements. This result was unsurprising because the

distribution of FN in PHS environments was greater than in

both other mega-environments (Figure 1). Genotypic values,

BLUPs, were not predictive of the Eberhart and Russell sta-

bility or the y intercept in the Finlay–Wilkinson regression.

When the three mega-environments were combined, the top

three varieties according to BLUPs did have lower, and there-

fore more stable, Eberhart and Russell stability values. That

same trend was not observed in the PHS mega-environment

datasets. In fact, the two most stable varieties in the PHS

mega-environment had the lowest genotypic values. This sug-

gests that these Type 3 stability values do not also reflect the

overall performance of a variety.

Although the measures of stability derived from the Finlay–

Wilkinson regression provide some insight, its utility is lim-

ited to only a linear fit of the complex G × E interaction. If the
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residual variance of the model is large, then the linear approx-

imation does not explain most of the G × E interaction.

3.5 AMMI analysis

The AMMI analysis was used to take our exploration of

G × E interactions one step further by visualizing these inter-

actions in a biplot and to provide a different estimate of sta-

bility. The first axis of the AMMI biplot can be compared

to the Finlay–Wilkinson regression because it describes the

largest amount of environment interaction. In contrast with

the Finlay–Wilkinson regression, the AMMI model is then

able to incorporate the next best-fitting effect as the second

axis in the biplot, which accounts for the largest amount of

genetic interaction. All effects in the model (environments,

replications, genotypes, and G × E interaction) were highly

significant (p < 0.001) (Table 3). There was not an expecta-

tion that this model would outperform the variance compo-

nent model (Eq. [1]); we were more interested in visualizing

the nonlinear G×E patterns within the PC piece of the AMMI

model. The interaction matrix was decomposed by extracting

52 PCs, 32 of which were significant (p < 0.05). The arith-

metic mean FN scores for varieties and for environments were

plotted against the PC1 scores, accounting for 30.4% of the

interaction sum of squares (Figure 3). The varieties and envi-

ronments on the right side of the origin showed above average

FN values. Varieties with the highest average FN were WB

456, WB 1376CLP, and Coda, whereas the varieties with the

lowest average FN were WA 8251 (KXB-04), 4J071246-1C,

and WA 8226. This corresponded precisely with the rankings

based on BLUPs. The AMMI plot allowed us to conclude that

of these six, 4J071246-1, Coda, and WB 456 showed a high

interaction with the environment vs. the other three, which had

PC1 scores near zero, indicating low environment interaction.

More information about the G×E interaction can be extracted

by plotting PC1 against PC2, accounting for an additional

8.3% of the interaction (Supplemental Figure S4a). Varieties

and environments closest to the origin were more variable and

difficult to place, whereas those near the external parts of the

graph showed positive interaction. When zoomed in closer to

the origin (Supplemental Figure S4b), trends are more vis-

ible. CuriosityCL+ had the highest FN value in Mayview

2016, and Puma had the highest FN values in Pullman 2013.

Both of these environments were PHS mega-environments

yet were negatively correlated with each other as they fell in

opposing quadrants.

The AMMI stability value ranged from 0.01 to 20.63 with

an overall mean of 3.07 across the 133 varieties. The lower

AMMI stability value indicated higher stability. The most

unstable varieties were Bruehl (15.9), ARS-Selbu (19.7), and

Xerpha (20.6), whereas the most stable were WA 8201 (0.01),

WA 8203 (0.02), and WA 8232 (0.03). The AMMI stability

value for the six varieties selected as the top and bottom three

based on BLUPs (Table 2) revealed little correlation, meaning

that BLUPs for FN are not necessarily indicative of stability

according to the AMMI model.

A wide range of correlation values was observed between

stability estimates previously discussed: BLUP, variety mean

FN, AMMI stability value, Finlay–Wilkinson regression coef-

ficient, and Eberhart and Russell stability based on either the

combined or mega-environment datasets (Supplemental Fig-

ure S5). The BLUP and variety mean FN were most closely

correlated (p < 0.0005), but when G × E interaction param-

eters were incorporated into measures of stability, the corre-

lations to BLUP and variety mean started to decrease. When

Finlay–Wilkinson and Eberhart and Russell stability values

were calculated using the entire dataset, they did correlate

significantly with BLUP and variety mean FN (p < 0.0005),

but once split by mega-environment, the relationship shifted

drastically. Across two of the mega-environments, PHS and

LMA, correlations between Finlay–Wilkinson and Eberhart

and Russell stability values were significant and positive (0.79

and 0.84, respectively), whereas correlations between Finlay–

Wilkinson stability and BLUP (−0.89 and −0.72) and Eber-

hart and Russell stability and BLUP (−0.66 and −0.67) were

significant and negative. The same was not true of the No

Event mega-environments. Finlay–Wilkinson and Eberhart

and Russell stability measures within the No Event mega-

environments were positively correlated with BLUP (0.64 and

0.27), and only the correlation between Finlay–Wilkinson and

BLUP was significant.

Although the AMMI model gives an additional measure

of stability related to G × E interaction that is missing from

the Finlay–Wilkinson regression, it does have some limita-

tions. The AMMI model only explains the G × E interaction

well if the first few terms of the PCA represent true structure.

If the first few terms are very similar, then it is difficult to

identify patterns.

3.6 GGE biplots

We used GGE biplots to examine the combined genotype plus

G × E interactions on a single biplot. This contrasts with

the AMMI biplot, which only incorporates the G × E inter-

actions. The GGE biplot allows the user to quickly identify

optimal varieties for each environment by looking at their

relative length and angles. It is also possible to identify the

best-performing variety overall or in each environment. How-

ever, it should be noted that all biplots are limited by the fact

that they are a visual tool, not a statistical test. If most of the

variation is not explained by the first two PCs, then the picture

can be misleading.

Blue concentric circles center around a point known

as the ideal test environment, equal to the point on the
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T A B L E 3 ANOVA table for the additive main effects and multiplicative interaction model (AMMI) model applied to entire dataset

GEI SS (cumulative)a

Term Decomposition F value df %
Environment environment 26.0*** 52 –

Replication (rep) Environment(rep) 7.0*** 188 –

Variety variety 31.6*** 132 –

Variety.environmentb variety.environment 2.1*** 2266 –

PC1 48.1*** 183 30.4

PC2 13.3*** 181 8.3 (38.7)

PC3 9.6*** 179 5.9 (44.6)

…c – – –

PC33 1.2 119 0.5 (96.0)

Error error *** 1559 –

***Significant at the 0.001 probability level.
aGEI, genotype × environment interaction; SS, sum of squares.
bEnvironment × variety interaction.
cPrincipal components PC3–PC32 are all significant at p < 0.05.

average environment axis indicated by the dashed line that

is the length of the longest environment vector away from

the origin (Figure 4a). Based on this, four environments were

determined to be ideal test environments for FN—Colton,

Fairfield, Mayview, and Farmington 2016, all characterized

as PHS mega-environments. The performance of a variety was

estimated to be better than average in that environment if the

angle between its vector and the environment was <90◦. Two

varieties are highlighted in Figure 4a: Bruehl (blue dashed

line) performed poorly overall and Masami (red dashed line)

performed better than average in PHS environments.

The six varieties selected based on BLUPs in the previous

analyses and an additional 14 random varieties were used to

make a 20-variety GGE biplot more manageable for visual

inspection (Figure 4b). As was observed in the GGE biplot

with all data (Supplemental Figure S6), LMA and PHS mega-

environments were closely correlated to each other, and more

loosely correlated to No Event mega-environments.

The black dashed line drawn through the PHS mega-

environment, the axis for PHS, allowed for ranking of

varieties based on performance in that mega-environment.

Rankings were visualized more clearly with green solid lines

perpendicular to the PHS axis connected to each variety. This

was done for all mega-environments with the AMMI stabil-

ity value for comparison (Supplemental Table S6). Rankings

in the three mega-environments were significantly correlated

with each other (p < 0.005), and with all other measures dis-

played in Supplemental Figure S5 except for the AMMI stabil-

ity value and the Eberhart and Russell stability in PHS mega-

environments (Supplemental Figure S7). When rankings were

done within LMA and PHS mega-environments, the same

varieties remained in the top and bottom 10, although the rank

shifted slightly. Alternatively, there was no correspondence

in variety ranking between No Event mega-environment, and

the LMA and PHS entered mega-environment rankings. A

which-won-where polygon connected the varieties furthest

away from the origin with an equality line (gray solid). Red

dashed lines perpendicular to each equality line and going

through the origin split the biplot into six sectors. The equal-

ity line between WB 1376CLP and WB 456 indicate that WB

456 had higher FN in PHS and LMA mega-environments than

WB 1376CLP. The PHS and LMA mega-environments fall

into one sector, and No Event falls in an adjacent sector. WB

456 is the winner in the PHS and LMA sector, whereas Coda

and WB 1376CLP are both winners in the No Event sector.

WA 8251 was the worst performing variety overall according

to the which-won-where polygon.

4 DISCUSSION

This study has compared various statistical methods of analy-

sis to determine the most suitable procedure to evaluate a com-

plex trait measured using a highly unbalanced dataset. Assess-

ing the suitability of these methods for estimating stability in

such a trait can serve as an example for future use in other

complex traits and crops.

Falling number is a complex trait because it depends on

multiple genotypic, developmental, and environmental fac-

tors. Resistance to low FN can result from genetic resistance

to PHS and to LMA. However, higher FN can also result from

higher grain protein concentration (Ross, Flowers, Zemetra, &

Kongraksawech, 2012). The G × E interaction is complicated

by the fact that susceptibility to LMA and PHS are depen-

dent on the timing of weather events relative to developmen-

tal events. Late-maturity α-amylase susceptibility is limited to

a developmental window during grain maturation, such that
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F I G U R E 3 Biplot of the unadjusted mean falling number and the first principal component analysis (PCA) axis for interaction of 133

genotypes and 53 environments. Varieties are in blue and environments in red. The vertical lines represent the grand mean of the experiment

a temperature shock must occur between approximately 23

and 28 d past anthesis. Tolerance to PHS mainly results from

higher seed dormancy, the inability of mature seeds to germi-

nate under favorable conditions. Since dormancy is gradually

lost after physiological maturity through dry after-ripening,

differences in PHS resistance depend on how much time has

passed since the grain first reached physiological maturity.

Moreover, initial dormancy varies with environmental condi-

tions during grain maturation. For example, higher dormancy

can result from drier or cooler conditions during grain mat-

uration (Biddulph, Plummer, Setter, & Mares, 2007, 2008;

Nakamura et al., 2011). Our ability to account for all of these

environmental impacts was limited by the nature of the data

available. The physiological data collected were limited to

heading date and harvest date, so extrapolating using only

those agronomic indicators paired with basic weather data

limited precision in defining mega-environments. Moreover,

some PHS environments may also have experienced LMA.

This may explain why most of the phenotypic variation was

explained by the residual (error) in the Finlay–Wilkinson

regression, and why residual errors were considerable in

other analyses.
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F I G U R E 4 (a) Genotypic main effect plus genotype × environment interaction (GGE) biplot showing the ideal test environment for the falling

number (FN) in preharvest sprouting (PHS) mega-environment dataset (represented by the center of concentric circles), and two variety performance

vectors (Bruehl is blue, Masami is red). The gold unit circle serves as a point to where environment vectors are perfectly represented in the

two-dimensional plane. (b) GGE biplot for FN for 20 varieties (6 selected based on BLUPs and 14 selected randomly). Grouping in three

mega-environments are shown (blue vectors are No Event [NE], gold vectors are late-maturity α-amylase [LMA], and black vectors are PHS), and

sectors (red dashed line) are defined by which-won-where polygon (gray line) made by connecting equality lines between winning varieties at

vertices. The black dashed line going through PHS allows ranking of varieties based on performance in PHS environments (green solid lines)

Heritability as measured by the “effective error variance”

was greatly improved by using mega-environment as a fixed

effect in the model. Piepho and Mohring (2007) found this

measure of response to selection using BLUPs to work

“remarkably well” for very unbalanced data. This indicates

that response to selection within a mega-environment is much

higher than it is without first splitting environments into

mega-environments. This suggests that selection for higher

FN within a breeding program may be more effective if

done within trials where LMA or PHS triggering conditions

are present.

In this study, Type 1 stability was desirable. Type 1 stability

reflects homeostasis, where a variety is less sensitive to envi-

ronmental factors. This is not always desirable in the breeding

program, especially in regard to yield, but with FN, the best

varieties will have some degree of homeostasis across envi-

ronments, both under PHS and LMA. Most of the most stable

varieties according to AMMI’s stability value do not have

the highest mean FN or rank consistently stable based on the

Finlay–Wilkinson or Eberhart and Russell methods. However,

those varieties with the worst AMMI’s stability value ranking

were also among those with the lowest mean FN and least

stability according to the Finlay–Wilkinson and Eberhart and

Russell method, in most cases. This indicates that AMMI’s

stability value may be best used for culling bad varieties.

This finding is consistent with the suggestion of Sabaghnia,

Sabaghpour, and Dehghani (2008) that AMMI’s stability

value is a useful tool for selecting both for yield and stability.

The principal challenge of this study was to recommend

the most appropriate methods or combination of methods to

be used in selecting superior wheat varieties for breeder and

farmer use. The relationships between variety stability esti-

mates were compared on a biplot (Figure 5). The first PC

(PC1), explaining 36.3% of the variation, separated the over-

all genotype performance estimates, FN and BLUP, from all

estimates of stability ranging from Type 2 stability (PC1 < 0)

to Type 1 stability (PC1 > 0). As discussed by Flores, Moreno,

and Cubero (1998), Type 2 stability was traditionally desired

by agronomists who define a stable genotype as one that

corresponds to the quality of the environment. In contrast,

Type 1 stability is considered desirable by plant breeders

who define a stable genotype as one that performs consis-

tently under changing environments. Group 1, variety mean

FN and BLUP, fall clearly into the Type 2 category of sta-

bility, whereas Groups 3 and 4 fall clearly into the Type 1

category. Groups 3 and 4 contain Finlay–Wilkinson, Eber-

hart and Russell, and AMMI’s stability values calculated

from all datasets including PHS and LMA mega-environment

trials. Interestingly, Finlay–Wilkinson and Eberhart and Rus-

sell stability estimates for the No Event mega-environments
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F I G U R E 5 Plot of two principal components (PC1 vs. PC2)

among ranks by best linear unbiased predictor (BLUP), variety mean

falling number (Var Mean), AMMI’s stability value (ASV), Eberhart

and Russell stability (ER), and Finlay–Wilkinson stability (FW) of 133

winter wheat varieties. Each vector represents one of the

aforementioned measures of stability and/or performance. The

abbreviation PHS refers to preharvest sprouting and LMA refers to

late-maturity α-amylase

fall almost directly on the vertical axis. This indicates that

data from the No Event mega-environments alone provided

no information regarding Type 1 or Type 2 stability. Thus,

environments that do not trigger a PHS or LMA event cannot

predict relative variety performance in environments that do

trigger PHS or LMA, even though significant genetic varia-

tion for FN existed in the No Event environments.

Group 4, containing estimates from LMA datasets only,

was a predictor of stability but not of mean FN, and the vector

lengths were shorter in that group, indicating that these data

were variable. This suggests that it is more effective to select

for high FN in PHS than LMA environments. In addition, PHS

seems to cause a lower FN in susceptible varieties than LMA

in general (Figure 1; Mares & Mrva, 2014). Although it may

be difficult to breed for LMA resistance, breeders must con-

tinue to select for this trait because even a small decrease in

FN can result in steep discounts for wheat producers (Steber,

2017). The BLUP and genotype means were directly nega-

tively correlated with the LMA environments, indicating that

they may prove useful for selecting for higher general FN in all

environments. Based on our biplot analysis, if the objective is

to select varieties with stable and high FN, then Group 3 meth-

ods will be the best choice. Of these five methods, the ones

falling near the center of the quadrant (Eberhart and Russell

in PHS and the AMMI stability value) will maximize accu-

racy by selecting varieties with Type 1 stability and high FN

or, alternatively, culling varieties that are unstable.

The AMMI and GGE biplots allow the researcher to graph-

ically visualize phenotypic performance and interactions. In

contrast with AMMI biplots, which explain solely G × E

interaction, GGE biplots approximate the combined genetic

and G × E interaction effects of varieties. Furthermore, the

GGE biplot evaluated environment utility and ranking of vari-

eties by mega-environment. The subtle difference in ranking

of varieties in LMA vs. PHS mega-environments agreed with

previous reports that different genes independently contribute

PHS and/or LMA resistance (Mares & Mrva, 2014). Using a

combination of GGE ranking and Eberhart and Russell sta-

bility in low-FN environments and AMMI’s stability value

provides a relatively unique measure of FN value and stabil-

ity. The main limitation of these biplots is that it is difficult

to examine many varieties in a single plot. It may be neces-

sary to first filter the data by choosing to look at varieties

with the highest or lowest BLUPs. When we applied these

combined selection methods to our dataset, the clear winner

was variety, WB 1376CLP, whereas the clear loser was variety

4J071246-1C.

Stability and absolute performance, as measured by BLUPs

of FN, are not the same thing. For example, one variety

may stably perform poorly, whereas another may perform

poorly only with increasing environmental pressure. Even so,

we have been able to use a combination of BLUPs, mega-

environment distinction, and PCA to identify the best- and

worst-performing varieties for FN in these trials. Methods

that provide a measure of phenotypic stability, like Finlay–

Wilkinson and Eberhart and Russell analyses, build on mixed

model theory and can be expanded to provide a way to eval-

uate genotype response to specific increasing environmental

pressure such as weather conditions with higher incidence of

PHS-inducing rain or a greater number or magnitude of LMA-

inducing temperature fluctuations.

Future work will need to examine whether it is pos-

sible to model multiple factors simultaneously to provide

farmers with a statistically valid way to rank varieties for

complex traits like FN. This could include using the two-

stage multienvironment trial analysis described by Cullis,

Thomson, Fisher, Gilmour, and Thompson, 1996a, 1996b)

or the factor analytic model and the prediction compo-

nents described by Smith and Cullis (2018), but these

will only be effective with large datasets, and currently,

software for analysis of factor analytic models are not

open source.

Results from GGE biplot and Finlay–Wilkinson regression

are easy to interpret and can be used when a moderate amount

of G × E data have been collected even without replicated tri-

als. Plant breeders often plant large single-replication nurs-

eries for initial yield trials. The models that we explored can

be used to obtain information about G × E interactions from

single-replication breeding trials. Second, these results con-

firmed the fact that locations where FN was 300 or greater
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were not useful in making decisions regarding varieties’ low

FN performance.

Frequently, researchers are trying to make better sense of

data after it has been collected or obtained. The methods

explored in this paper are useful in analyzing G × E perfor-

mance from experiments that often are out of the control of

the investigator in terms of sampling and execution from the

beginning. This is a challenge, but it is still important to find

a valid way to analyze the data and make it interpretable to

farmers and the public.
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