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Abstract
A factor analytic model was used to characterize data generated with the Hagberg–

Perten falling number (FN) method, a measure of wheat (Triticum aestivum L.)

quality influenced by genotype-by-environment interactions. The FN method detects

starch degradation due to the presence of the enzyme α-amylase in wheat grain such

that a low FN indicates high α-amylase activity and high risk of poor end-product

quality. Because farmers receive severe discounts for low FN, FN data have been

collected over multiple years for the Washington State University multilocation vari-

ety trials to help farmers and breeders identify lower risk varieties. Analysis of these

data to objectively rank varieties is challenging because the dataset is unbalanced

and because FN is subject to complex genotype-by-environment interactions. Low

FN can result from environmental differences at multiple stages in grain develop-

ment because there are two major causes of α-amylase accumulation in grain, late-

maturity α-amylase (LMA) and preharvest sprouting (PHS). A five-factor analytic

model extracted explicit measures of overall performance and of stability in variable

environments from historical FN data from the multilocation trial, providing a basis

for breeding and planting decisions. Whereas a linear model explained 70.3% of the

variation, the five-factor analytic model accounted for 92.5% of variation in the data.

Examination of factor loadings enabled us to separate environments and genotype

response to either PHS or LMA, specifically. This is the first application of a factor

analytic model to evaluate the end-use quality trait FN, providing a method to rank

varieties for grower decisions and breeder selections.

Abbreviations: AIC, Akaike information criterion; AMMI, additive main

effects and multiplicative interaction; BIC, Bayesian information criterion;

FA, factor analytic; FN, falling number; G×E, genotype-by-environment;

LMA, late-maturity α-amylase; PHS, preharvest sprouting; WSU,

Washington State University.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© The Authors. Crop Science published by Wiley Periodicals LLC on behalf of Crop Science Society of America. This article has been contributed to by US Government employees

and their work is in the public domain in the USA

1 INTRODUCTION

Wheat (Triticum aestivum L.) growers in the northwestern

United States produce some of the highest quality soft white

wheat in the world, the majority of which is exported to Asian

markets for use in specialty products such as sponge cakes and

noodles (FAO, 2017). One important determinant of quality
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is the level of starch degradation present in the flour. Certain

weather conditions induce the enzyme α-amylase in the grain

prior to harvest, potentially leading to starch digestion and

decreased end-use quality. The wheat industry measures the

level of α-amylase and starch degradation using the Hagberg–

Perten falling number (FN) method (Ross & Bettge, 2009).

Briefly, the FN test measures the gelling capacity of a mix-

ture of flour and water by counting the number of seconds it

takes for a stirrer to drop through the heated mixture. Growers

can receive as much as a US$0.01 per 27 kg (1 bu) discount

for every second below a FN of 300 s (USDA, 2017).

Falling number is a complex trait affected by multiple envi-

ronmental and genetic factors. There are two main causes of

high α-amylase and, therefore, low FN: preharvest sprouting

(PHS) and late-maturity α-amylase (LMA) (Mares & Mrva,

2014). The first, PHS, is the germination of the mature grain

on the mother plant in response to rainy conditions before har-

vest. Starch is degraded during germination to provide fuel for

embryo and seedling growth. The degree of PHS tolerance

is determined by genetics but is affected by environmental

factors during seed development and germination. The sec-

ond potential cause of low FN is LMA, the production of

α-amylase in response to a cool temperature shock or con-

tinuous cool temperatures during late grain filling (Derkx &

Mares, 2020; Mrva & Mares, 1996). Late-maturity α-amylase

is also influenced by both genetic and environmental fac-

tors. Moreover, low FN can also be caused by either low

grain protein content or variation in starch composition (Ross,

Flowers, Zemetra, & Kongraksawech, 2012; Zeng, Morris,

Batey, & Wrigley, 1997). The multiple genetic and environ-

mental influences on the FN phenotype present a challenge

to plant breeders and agronomists to identify tolerant wheat

cultivars.

Starting in 2013, FN tests have been performed on grain

harvested from the Washington State University (WSU)

Cereal Variety Testing Program to provide farmers with

information about the relative FN susceptibility among vari-

eties (Sjoberg, Carter, Steber, & Campbell, 2020). Although

the data can be viewed by variety over multiple locations or

by location within a year on a publicly accessible database

(http://steberlab.org/project7599.php), there have been

inconsistencies in ranking of varieties among environments,

suggesting the presence of genotype-by-environment (G×E)

interactions. Another factor contributing to the complicated

data analysis was that the number of FN replicates that

were performed for different varieties and environments

varied due to resource limitations. Moreover, the dataset was

unbalanced because old varieties were slowly replaced with

newly released varieties and because not all varieties were

grown in all locations due to variability in adaptation.

The WSU Cereal Variety Testing Program conducts

trials over a wide range of rainfall zones, ranging

from <300 to >500 mm of annual precipitation. Vari-

Core Ideas
∙ The FA model better accommodates a dataset of

unbalanced nature with large G×E effects.

∙ This study showed that the FA model can be

applied to FN, a wheat end-use quality trait.

∙ The FA model quantified genotype performance

and environmental stability.

eties are grown in low- or high-precipitation environments

depending on their projected adaptation. Trials in various

precipitation zones exhibited heterogeneous variances

when compared across the entire dataset. Because of the

unbalanced structure of the varieties over years, and the

multiple causes of low FN in this dataset, variety means over

environments do not accurately reflect differences among

varieties. Although reporting data based on precipitation

zone groups can account for heterogenous variances for a trait

like grain yield, these groups do not accurately reflect variety

performance for FN because the different environments have

problems with low FN in different years.

Approaches for analyzing this multienvironment trial

dataset using weather patterns in order to determine whether

LMA or PHS were causing the low FN in each experiment

were explored in Sjoberg et al. (2020) and provided a means

to identify stable varieties with good FN. In these analy-

ses, Sjoberg et al. (2020) showed that the variance compo-

nents associated with genotype were of similar magnitude to

those associated with G×E. While useful, methods to dis-

sect G×E interaction like linear models, the Finlay–Wilkinson

regression, additive main effects and multiplicative interac-

tion (AMMI), and genotype plus G×E models are limited in

their ability to accommodate the unbalanced nature of the

dataset (Sjoberg et al., 2020).

The current research evaluated an alternative to the meth-

ods described above, the factor analytic (FA) model, as a more

robust way to tease apart the G×E interactions affecting FN in

this unbalanced dataset. Although the AMMI model explored

in Sjoberg et al. (2020) is one type of FA model, the model

introduced by Piepho (1998) and Smith, Cullis, and Thomp-

son (2001) considers genotype and G×E effects to be ran-

dom and accommodates the heterogeneity of genetic variance

across environments and between pairs of environments. The

FA approach models the G×E interaction effects to account

for covariances among them in terms of a small number of

common factors.

Previous studies have used the FA model to handle the

complex G×E associated with unbalanced multienvironment

trial datasets in a variety of crops including, but not limited

to, wheat, barley (Hordeum vulgare L.), sorghum [Sorghum

http://steberlab.org/project7599.php
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bicolor (L.) Moench], lentil (Lens culinaris Medik.), and

maize (Zea mays L.) (Burgueño, Crossa, Cornelius, & Yang,

2008; Dawson et al., 2013; Kelly, Smith, Eccleston, & Cullis,

2007; Mengesha et al., 2019). Smith and Cullis (2018)

developed a simple method of summarizing the results of

the FA model to compare varieties, and it has been suc-

cessfully adopted by the Australian government organiza-

tion responsible for conducting small grain and legume

field trials.

Studies that have explored the genetics of variation in large

datasets of wheat quality data have not been able to estab-

lish a good measure of stability or adaptability. Laidig et al.

(2017) used a linear model approach to estimate the genetic

and nongenetic sources of variation present in 32 yr of wheat

quality data, including FN, finding that in their case FN had

a genetic gain of only 5.8% over 32 yr. Hernández-Espinosa

et al. (2018) evaluated end-use quality traits for stability in the

International Maize and Wheat Improvement Center (CIM-

MYT) wheat breeding program using a fixed-effect linear

model and rank shift across environments to classify varieties

as stable or unstable. Yabwalo et al. (2018) used the geno-

type plus G×E biplot method to measure stability and mean

performance of grain morphology traits in wheat. Our study

represents a unique application of the FA model to the grain

quality trait FN.

Our goal was to evaluate the FA model as an approach to

rank varieties for response to FN within an unbalanced dataset

from multienvironment trials. The resulting model allowed

varieties to be ranked both according to overall performance

and stability in challenging environments based on RMSD

(Smith & Cullis, 2018). The objective of this analysis was to

provide objective methods to rank varieties based on FN to

better inform farmers making planting decisions and breeders

making crossing decisions.

2 MATERIALS AND METHODS

2.1 Field materials and the
Hagberg–Perten falling number method

Statistical analyses were performed on a dataset consisting

of 3,570 FN datapoints representing 129 soft white winter

wheat genotypes, including released and unreleased cultivars

and breeding lines from the University of Idaho, WSU,

Oregon State University, Limagrain Cereal Seeds, WestBred

Wheat, USDA-ARS, and AgriPro Wheat (reported in Sjoberg

et al., 2020). The WSU Cereal Variety Testing Program

provided samples from WSU Extension Cereal Variety Test-

ing Program Soft Winter Wheat Trials conducted in 2013,

2014, and 2016 at 35 unique location and year combinations

(defined as environments) (Guy, Jitkov, Lauver, & Horton,

2013; Guy, Jitkov, Lauver, Horton, & Higginbotham, 2014;

Higginbotham, Jitkov, & Horton, 2016). These specific years

and locations were selected because low FN occurred across

multiple testing environments and entries. Cultural practices

and the FN tests were performed as described in Sjoberg

et al. (2020). An α-lattice incomplete block design with three

replications was used in each field experiment, and only

trials where FN tests were conducted on more than one field

replication were used in this study. Because samples from all

three field replicates were not always available, samples were

generally taken from the first two replications. Therefore, a

biological replicate was defined as samples from different

field replicates, analyzed separately. The α-lattice blocking

was maintained for the sampled field replications when the

FN were assayed.

2.2 Mixed linear model

The full dataset was analyzed initially using a standard linear

model of the lth block within the kth replicate of the ith variety

observed in the jth environment, written as

𝑌𝑖𝑗𝑘𝑙 = μ + 𝑉𝑖 + 𝐸𝑗 + 𝑉 𝐸𝑖𝑗 + 𝑅(𝐸)𝑘(𝑖)

+ 𝑏(𝑅𝐸)𝑙(𝑘𝑖) + 𝑒𝑖𝑗𝑘𝑙 (1)

where Y = the plot FN, μ = the overall mean (intercept),

Vi = the genotype effect, Ej = the environment (location

× year) effect, VEij = the G×E interaction, R(E)k(i) = the

replication effect within each environment, b = the block

effect within each replication, and e = the residual vari-

ance. Variance components were estimated using residual

maximum likelihood (REML). All effects were considered

random.

Packages used for these analyses included ASReml-R (V4)

and ggplot2 in R version 3.5.1 (Butler, 2020; Wickham,

2016).

2.3 Factor analytic model

Factor analytic models are referred to as FAk where k = the

number of factors defined by the user. The G×E effect for vari-

ety i and environment j is written as

𝑉 𝐸𝑖𝑗 = λ1𝑗 𝑓1𝑖 + λ2𝑗 𝑓2𝑖 + ⋯ + λ𝑘𝑗 𝑓𝑘𝑖 + δ𝑖𝑗 (2)

where λrj were the effects (also known as loadings) for the

latent environmental factors and fri were effects (also known

as scores) for the variety responses to those factors. The error

is represented by δij. Loadings and scores were derived from

the between-environment additive genetic variance matrix as

described in Smith et al. (2001).
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Overall performance of varieties was measured using the

following equation:

λ̄1 𝑓 ∗
1𝑖 =

1
𝑝

𝑝∑
𝑗=1

λ̂∗1𝑗𝑓
∗
1𝑖 (3)

where λ̂1 was the mean of the rotated estimated load-

ings (as indicated with an asterisk) for individual environ-

ments for the first factor across p environments (Smith &

Cullis, 2018).

Empirical best linear unbiased predictions (EBLUPs) of

the random variety-by-environment effects can be obtained

directly from estimations of Equation 3, as

𝑉 𝐸𝑖𝑗 = β̃𝑖𝑗 + δ̃𝑖𝑗 (4)

where β̃𝑖𝑗 is the predicted regression component (also called

the common variety by environment effect) and δ̃𝑖𝑗 is the error

(Smith, Ganesalingam, Kuchel, & Cullis, 2015). For FA mod-

els, higher overall performance values are better and lower

RMSD values reflect a higher level of stability.

The global stability of a variety, as defined by Smith and

Cullis (2018), was measured by the RMSD, calculated as

𝑅𝑀𝑆𝐷 =

√√√√1
𝑝

𝑝∑
𝑗=1

ϵ̃∗2
𝑖𝑗

(5)

where ε̃∗2
𝑖𝑗

= β̃𝑖𝑗 + λ̂∗1𝑗𝑓
∗
1𝑖. The ε̃∗2

𝑖𝑗
were therefore deviations

from the first factor predictions in a plot where the x axes were

the first factor loadings and y axes were the common effects.

Responsiveness of varieties to each factor was calculated as

in Smith and Cullis, (2018):

𝑇𝑟 =
(
λ̄𝑟+ − λ̄𝑟−

)
𝑓 ∗
𝑟𝑖 (6)

where Tr was a variety’s response for factor r, and λ̄𝑟+ and

λ̄𝑟− were, respectively, the mean of the positive and negative

estimated loadings for factor r.

A linear model with genotype, environment, G×E, replica-

tion, and block (Equation 1) was used as a baseline to com-

pare with the FA model using from one to nine factors. All

effects were considered random except the environment and

replicates within the environment, which were fitted as fixed

effects for both models. For the FA model, a separate vari-

ance for blocks within replicates within each environment

was fitted as random; there was also a separate error vari-

ance for each environment. The maximum number of fac-

tors was limited to nine due to the large processing time

required for additional factors. The Akaike information crite-

rion (AIC), Bayesian information criterion (BIC), and resid-

ual log-likelihood tests were used to choose the most parsi-

monious model over the higher order models.

3 RESULTS

3.1 Phenotypic data analysis

This study characterized the G×E interactions affecting the

FN of soft white winter wheat in the WSU Cereal Variety test-

ing Program in 2013, 2014, and 2016. The FN dataset was

highly unbalanced because not every variety was grown in

every experiment. The overlap between the varieties grown

is shown using a heat map, ranging from the lowest in green

to the highest in white (Figure 1). The minimum number of

overlapping varieties between experiments was nine, the max-

imum was 60, and the mean was 28.4. The groupings shown in

Figure 1 reflect the nature of the WSU Cereal Variety Testing

Program in that locations that fall in the same rainfall zone and

year will have a similar set of adapted varieties planted, in con-

trast with those planted in another rainfall zone. This dataset

had widespread incidence of low FN. Of the 35 experiments,

32 experienced at least a minor low FN event, defined by the

incidence of at least five varieties with a FN < 300 (Table 1).

A moderate, 13-fold increase was observed in error variance

among experiments, demonstrating that the amount of unex-

plained error in experiments is inconsistent and heterogeneous

(Table 2). Moreover, differences in CV were due to a combi-

nation of genetic and G×E variability, further strengthening

the argument to apply the FA model as a means of understand-

ing the G×E variability.

3.2 Factor analytic model estimates

To find the best fit for our dataset, 10 different models were

compared. The AIC, BIC, and residual log-likelihood tests

supported the use of the FA5 model as the best fit over the

higher order models to compare with the linear model with

genotype, environment, G×E, replication, and block as ran-

dom effects. Although the higher order models explained

slightly more variation, they may have been overparameter-

ized, so the five-factor model was used in the rest of the study

(Table 3).

The loadings by factor in the FA5 model were decom-

posed for further examination using basic summary statistics

(Table 4). Environmental loadings for the first factor of the

model were all positive, ranging from 11.5 to 58.9 with a mean

across varieties of 29.1 and a median of 25.1. The remaining

four factors had a range extending into negative values. The

percentage variation accounted for by the FA5 model within

each environment was calculated by factor and overall. The

range, mean, median, and the number of environments that

had over and under 80% of their variation explained by all

factors in the model were reported (Table 5). The mean indi-

vidual trial percentage variance accounted for by the first fac-

tor in the FA5 model was 55.8%, but the mean percentage



376 SJOBERG ET AL.Crop Science

T A B L E 1 Decomposition of 3,570 falling number (FN) datapoints representing 129 soft white winter wheat genotypes, based on incidence of

low FN

Year No. locations No. varieties No. locations with FN <300
2013 9 65 9

2014 8 73 5

2016 18 79 18

T A B L E 2 Summary of Washington State University cereal variety testing program winter wheat trial falling number (FN) data

Statistic Min. Max. Mean Median
Mean FN, s 64.5 489 334.3 340

Error variance, s2 0.35 4.64 1.42 1.03

CV, % 7.76 41.34 15.25 12.92

T A B L E 3 Summary of fitted models, including the linear model method and factor analytic (FA) models with one factor to nine factors

Model
No. of
parameters

Residual log-
likelihood AIC BIC vaf

%

Linear model 4 −14,826.0 29,659.9 29,684.6 70.3

FA1 70 −14,110.3 28,500.6 29,364.5 59.1

FA2 104 −13,949.6 28,247.3 29,320.9 82.7

FA3 137 −13,895.3 28,204.6 29,481.9 87.1

FA4 169 −13,863.9 28,205.8 29,680.5 89.5

FA5 200 −13,839.3 28,218.7 29,884.7 92.3

FA6 230 −13,814.0 28,228.0 30,079.1 94.9

FA7 259 −13,788.5 28,235.1 30,265.1 97.5

FA8 287 −13,770.6 28,255.2 30,458.1 98.5

FA9 314 −13,762.2 28,292.4 30,661.9 98.0

Note. The percentage of variance accounted for is indicated as vaf. AIC and BIC refer to Akaike and Bayesian information criteria, respectively.

T A B L E 4 Summary of environmental loadings for the FA5 model

Statistic Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Min. 11.5 −27.0 −23.2 −16.4 −15.0

Max. 58.9 46.6 21.1 15.6 13.6

Mean 29.1 −5.1 −1.3 1.3 −0.2

Median 25.1 −12.5 −3.0 1.0 0.1

T A B L E 5 Summary of percentage of variation accounted for by each factor in the FA5 model

Statistic Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 All factors
Min. 21.2 1.4 0.1 0.00 0.00 66.16

Max. 91.5 51.1 52.4 24.2 18.4 100

Mean 55.8 22.1 7.4 4.1 3.4 92.9

Median 56.6 24.0 3.1 1.9 1.8 100

No. of experiments >80% 31

No. of experiments <80% 4
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F I G U R E 1 Connectivity of experiments based on genotypes planted. Green indicates the least connected experiments, and white indicates the

most connected experiments

of variance accounted for by the five factors combined was

92.9%, and the number of experiments with <80% of variance

accounted for was just four.

Varieties were ranked according to their overall per-

formance and according to their stability. Using FA5, the

overall performance of a variety was plotted against the

RMSD, which represented a measure of global stability

(Figure 2). A set of varieties with high FN and good stability

or environmental resilience was identified. For this dataset

specifically, those within the blue box had a high level of

overall performance for FN and also had a high stability over

the varying environments. For example, WB 456 had the

highest overall performance (49.5) and a better than average

level of stability (RMSD = 21.4). Variety Pritchett had a

similar level of stability to WB 456 (20.7), but its overall

performance was much lower (−30.0). In contrast, variety

Coda had a high level of overall performance (39.7) but is

one of the more unstable varieties (29.2). The four worst

varieties based on this graph are Bruehl, SY Ovation, Xerpha,

and ARS-Selbu. This analysis suggests that growers should

be cautious when considering these varieties, since they may

not meet export receival standards for FN.

3.3 Variety comparisons using the factor
analytic model

Latent regression plots compared five varieties: WB 456, Xer-

pha, WA 8226, Coda, and WB 1376CLP (Figure 3). WB

456 was chosen for this comparison because it had the high-

est overall performance value. Xerpha and WA 8226 were

the most unstable based on the RMSD. Coda was of interest

because it had the fourth highest overall performance value

but had a high RMSD value indicative of lower stability. WB

1376CLP had the second highest overall performance value

but had a low RMSD value indicative of higher stability. The y
axis represents the common variety effect, and based on what

we know of this model, it can be concluded that the larger the

common variety effect, the more desirable that variety was in

terms of FN. Note that the percentage variation explained by

the FA5 model was unique by environment. The x axis was the

(rotated) estimated first environment loadings. The slope of

the line was the effect (also known as the score) for the variety

response to the first factor. WB 456 was the superior variety

because it had a high common variety effect across all esti-

mated first loadings. In contrast, Coda did not perform well
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F I G U R E 2 Overall performance vs. stability measure (RMSD) for falling number for the Washington State University Cereal Variety Testing

Program winter wheat trials. The box highlights the area with varieties that perform well and are relatively stable. Varieties are represented by blue

circles, but only released cultivars are labeled by name

F I G U R E 3 Latent regression plot for the first factor for five varieties. REML, residual maximum likelihood

consistently, as evidenced by the high residual error between

the points and the line.

3.4 Trends and variety responses to
components of the factor analytic model

Interestingly, experiments that had a high response to the (pos-

itive) estimated loading for the second factor corresponded to

those found to have low FN due to PHS in a previous study

(Figure 4; Sjoberg et al., 2020). The original characterization

of PHS events were based on the incidence of precipitation

within the 2 wk prior to harvest. This trend suggests that the

second factor differentiates PHS events from other low FN

events, so from here on it will be referred to as the PHS-

factor. By plotting the overall performance values against

the variety’s estimated loading for the PHS-factor, pertinent
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F I G U R E 4 Residual maximum likelihood (REML) estimates of

the second factor vs. REML estimates of the third factor, by environ-

ment. The second factor is also referred to as the PHS-factor because

environments with high second factor loadings experienced severe PHS

events

F I G U R E 5 The response, by variety, to the preharvest sprouting

(PHS)-factor on the x axis, vs. the overall performance on the y axis.

Each point corresponds to a variety, but only 45 of the 129 varieties are

annotated

information about the varieties may be observed, especially

if the factor is associated with a meaningful environmental

factor (Figure 5). Varieties WA 8202 and SY Ovation had

the greatest PHS-factor loading, meaning they performed well

in environments with positive loadings to the second factor.

Keeping in mind that environments with a positive loading

for the PHS-factor suffered a PHS event, it can be concluded

that WA 8202 and SY Ovation have some tolerance to sprout-

ing. In contrast, varieties such as Bruneau, Xerpha, and Bruehl

had some of the most negative loadings to the PHS-factor.

These varieties have previously been identified as susceptible

to sprouting (Martinez et al., 2018; Tuttle et al., 2015). The

PHS-factor appears to identify varieties with higher loadings

as tolerant to PHS but still not generally great performers. This

could indicate that varieties with high PHS-factor loadings,

such as WA 8202 and SY Ovation, are susceptible to another

cause of low FN, such as LMA. As estimated loading for the

PHS-factor decreased, the trend disappeared. Estimated load-

ing of experiments to the third factor did not appear to be asso-

ciated with any environmental trend.

4 DISCUSSION

Developing varieties with reduced risk of experiencing low

FN is an important breeding objective because farmers receive

substantial discounts for low FN. To achieve this objec-

tive, breeders and farmers need a tool to assess the relative

risk when growing different varieties. This is difficult to do

because FN is controlled by complex G×E interactions. The

FA model and the subsequent use of selection tools developed

by Smith and Cullis (2018) address this problem by using the

overall performance value as an indicator of genetic contribu-

tion and the RMSD as the estimator of stability under chal-

lenging environmental conditions. By parsing out these two

elements, the FA model provides two objective measures to

assess relative risk.

The best varieties for FN have a high overall performance

value and a low RMSD value (Figure 2). Based on this cri-

terion, the most desirable varieties for FN performance were

WB 1376CLP and WB 456. Other good alternatives for FN

resistance included Norwest Duet, Mary, and Skiles. How-

ever, it is essential to examine the fit of the model before using

such data to make planting recommendations or use in breed-

ing schemes. Note that there was roughly a linear relation-

ship between FN overall performance and stability based on

RMSD (Figure 2). With some exceptions, most of the vari-

eties with higher overall FN performance had better stability,

whereas poor-performing varieties tended to have less stabil-

ity. Thus, breeders should be able to concentrate mainly on

breeding for improved FN test performance.

The FA model improves upon other graphical tools to

discern stability (Piepho, 1998; Smith et al., 2001). The

Finlay–Wilkinson as well as Eberhart–Russell methods do not

account for nonlinear G×E interactions (Sjoberg et al., 2020;

Smith et al., 2015). The AMMI model maintains all effects as

fixed, so it cannot account for variance heterogeneity. In addi-

tion to accounting for variance heterogeneity, the FA mod-

els can also handle large, unbalanced datasets. The FA model

has been successfully used for a wide range of phenotypes.

Kelly et al. (2007) applied the FA model to multienvironment
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trial datasets of wheat, barley, sorghum, and lentil and found

it to outperform unstructured models in several categories

including robustness, prediction accuracy in the presence of

G×E, and handling of heterogeneous genetic variances and

crossovers in genotype ranking. In maize datasets, Burgueño

et al. (2008) concluded that the FA model could be used for

modeling association among environments or genotypes and

that conclusions drawn from it were valid for a broader infer-

ence space. Dawson et al. (2013) made genomic predictions

within groups of environments clustered using several meth-

ods, and of those reported, the FA model had superior accu-

racy across environments with differing levels of genetic cor-

relation. Mengesha et al. (2019) used the FA model to identify

stability and adaptability of maize varieties as it related to both

grain yield and provitamin A content. This study showed that

the FA model can be applied to FN, a wheat end-use qual-

ity trait. The variety trial FN data analyzed was highly unbal-

anced, subject to large variety-by-environment effects, and

underpinned by two different biological processes, PHS and

LMA. The FA model proved a highly powerful statistical tool

for analyzing this data. Although the utility of the FA model is

clear, it also is complex and requires a reasonably high level of

statistical understanding to both fit the model and interpret the

results. The FA model might become more broadly applied to

breeding and variety characterization with development of a

tutorial on the postprocessing of values extracted from it, to

produce graphs such as Figure 2 and 3. These graphs would

be useful to breeders who may not have in-depth knowledge

of advanced statistical models.

Previous work showed that the FA model performs simi-

larly to or better than other models used to investigate G×E.

Piepho (1998) proposed the use of a FA model with common

specific variance, finding no significant advantage over the

traditional variance component model. Nevertheless, Kelly

et al. (2007) reported that the unstructured FA model was

superior to variance component models because it handles

the G×E and heterogeneous genetic variances present in the

datasets. Meyer (2009) reviewed the efficacy of the FA mod-

els in comparison with the linear mixed model framework,

finding them to be more capable of modeling G×E in all

types of datasets, including those with missing observations

or multiple random effects. An extension of this work enables

plant breeders to use FA for selection based on multiple traits

in multiple environments and for genomic selection models

(Dias et al., 2018; Ward et al., 2019).

The goal of this study was to find a model that could bet-

ter accommodate the unbalanced nature of the dataset and

large G×E effects. The FA model provided an excellent tool

to examine G×E interactions by quantifying genotype perfor-

mance and environmental stability (Figure 2). Under a linear

model structure, 70.3% of variation was accounted for by the

model, whereas the FA5 model accounted for 92.5% of vari-

ation in the data (Table 3).

The FA5 model allowed us to observe the trends in experi-

ments and glean information about biological responses. The

environment loadings from the second factor allowed us to

see some distinction between independent causes of low FN,

specifically to separate severe PHS events from all others, and

to identify varieties (WA 8202 and SY Ovation) that were tol-

erant to PHS but susceptible to LMA. This demonstrates the

power of this model in detecting environmental effects on FN.

This result also suggests that FA modeling of FN data from

variety trials could be used to identify varieties as being likely

affected by PHS and/or LMA. This could be useful in choos-

ing varieties for specific research or breeding goals. Although

the second factor was able to successfully model PHS, there

was no clear connection between a factor and LMA. Late-

maturity α-amylase is more difficult to model because there

is a short window of susceptibility to cold induction dur-

ing soft dough stage of grain filling (Mares & Mrva, 2014).

Thus, a variety may express LMA in one environment but

not another. Also, the FN test measures grain deterioration

due to either cause. Since PHS and LMA are induced by spe-

cific weather conditions that may occur separately or over-

lap during the same season, it will continue to be difficult to

determine the minimum number of seasons and environments

needed to define relative genetic susceptibility to low FN from

each cause until we develop methods to discern the true cause

of low FN in harvested grain samples. Clearly, one needs to

look at multiple years in which one or the other phenomenon

occurred. Because low FN is environmentally controlled, it is

difficult to sample enough environments to obtain estimates

of environmental stability. We have continued to add to this

dataset and plan to use it to conduct power analyses with the

goal of developing predictive models for varietal risk for low

FNs.

Latent regression plots, as in Figure 3, are more informa-

tive than t tests because the FA model can give an estimate

of variety performance in environments the variety was not

grown in, and it also shows all the variety by environment

effects for those chosen varieties. Ideally, latent regression

plots should be used to further investigate varieties identified

as interesting based on the graph of overall performance vs.

RMSD (Figure 2).

Extracting valuable information from unbalanced, multien-

vironment trial data is a challenge for breeding programs and

variety testing programs around the world. This study demon-

strated the utility of FA models in examining FN, an end-use

quality trait with high variability due to G×E interactions. The

FA models also allowed us to separate the G×E interactions

into similar groups, such as those affected by PHS, or LMA,

even when we did not have additional information about the

environments. The FA models thus have utility to improve the

efficiency of selection for a given trait that can be influenced

by multiple environmental effects and even by multiple plant

physiological pathways.
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