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Abstract
This review examines the application, limitations, and potential alternatives to
theHagberg–Perten falling number (FN)method used in the global wheat indus-
try for detecting the risk of poor end-product quality mainly due to starch degra-
dation by the enzyme α-amylase. By viscometry, the FN test indirectly detects
the presence of α-amylase, the primary enzyme that digests starch. Elevated α-
amylase results in low FN and damages wheat product quality resulting in cakes
that fall, and sticky bread andnoodles. LowFNcan occur frompreharvest sprout-
ing (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before
harvest cause PHS on themother plant. Continuously cool or fluctuating temper-
atures during the grain filling stage cause LMA. Due to the expression of addi-
tional hydrolytic enzymes, PHS has a stronger negative impact than LMA.Wheat
grain with low FN/high α-amylase results in serious losses for farmers, traders,
millers, and bakers worldwide. Although blending of low FN grain with sound
wheatmay be used as ameans ofmoving affected grain through themarketplace,
care must be taken to avoid grain lots from falling below contract-specified FN.
A large amount of sound wheat can be ruined if mixed with a small amount of
sprouted wheat. The FN method is widely employed to detect α-amylase after
harvest. However, it has several limitations, including sampling variability, high
cost, labor intensiveness, the destructive nature of the test, and an inability to
differentiate between LMA and PHS. Faster, cheaper, and more accurate alter-
natives could improve breeding for resistance to PHS and LMA and could pre-
serve the value of wheat grain by avoiding inadvertent mixing of high- and low-
FN grain by enabling testing at more stages of the value stream including at
harvest, delivery, transport, storage, and milling. Alternatives to the FN method
explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays,
near-infrared spectroscopy, and hyperspectral imaging.
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1 INTRODUCTION

Starch, proteins, and cell wall polysaccharides are the three
major nutrition components of dry wheat. Wheat trading
requires high standards for nutrition and end-use quality
related to these components (Ross & Bettge, 2009). Grains
are discounted when environmental stress causes a fail-
ure to meet receival standards, including starch degrada-
tion measured in the wheat industry using the Hagberg–
Perten falling number (FN)method (He et al., 2019). Starch
degradation is considered a major cause of poor end-use
quality, because long, intact starch polymers provide the
gelatinization and retrogradation needed for an accept-
able product (Bettge, 2018; Finnie & Atwell, 2016). Starch
goes through a thermodynamic physical change, known
as pasting, when heated in the presence of water. As the
semi-crystalline granules swell, hydrogen bonds dissoci-
ate, and the granules finally burst. Their constituent poly-
mers of amylose and amylopectin can then interact with
large quantities of water. This pasting event dramatically
increases viscosity. However, the transformation also ren-
ders the starch polymers susceptible to cleavage by α-
amylase, and starch cleavage decreases the viscosity. Loss
of viscosity can result in problems with poor end-products
by altering appearance and texture (Steber, 2017). Thus, α-
amylase expression as a consequence of preharvest sprout-
ing, the initiation of germination on the mother plant
when rain occurs before harvest, can have a strong nega-
tive impact on end-product quality. Even at early stages of
germination before the seedling emerges from the grain, α-
amylase can be produced at high enough levels to reduce
the end-use quality of wheat flour.
The FN method is valuable because it detects starch

degradation when there is no visible grain germination
(Perten, 1964). Although the FN method was originally
developed to measure the activity of α‑amylase in wheat
and other cereal flours, meals, and malts to assess bak-
ing performance (Hagberg, 1960, 1961; Perten, 1964), the
method was adopted as a means of assessing the degree of
sprout damage. Themethod is straightforward but requires
several specialized pieces of equipment including the FN
machine itself, a grinder, a shaker, and an oven or other
device for measuring moisture content. In preparation for
the FN test, the grain is ground, and the moisture con-
tent is determined. The sample weight is adjusted to obtain
7 ± 0.05 g, assuming 14% moisture. The presence of higher
or lower moisture is accounted for either by changing the
gram quantity ofmeal in the assay (i.e., a lower gram quan-
tity of meal is used if the moisture is <14%) (AACC, 1999)
or using a correction equation after the assay is performed
(FGIS Directive 9180.38, 2019). Twenty-five milliliters of
distilled water are added, and the sample is dispersed
by shaking by hand or by using a dedicated mechani-

cal device. A plunger is placed in the tube and a second,
duplicate tube is prepared in parallel, whereupon both are
placed in the FN boiling water bath. The FN machine agi-
tates the samples by moving the plunger up and down for
60 s. The plungers are released near the top of the tube,
and the machine measures the time in seconds for each
plunger to fall through the pasting wheat–water mixture
under the force of gravity. The test is terminated when the
plunger reaches the bottom, and the total time including
the 60 s of stirring becomes the FN. Thus, the minimum
FN is 60 s. The FNvarieswith elevation because the boiling
point of water is dependent on the atmospheric pressure.
Thus, the FN is corrected for barometric pressure (Del-
wiche, Rausch, et al., 2018).
Other methods that can detect pasting properties of

wheat flour ormeal include the Amylograph R©, the Ottawa
Starch Viscometer, and the Rapid Visco Analyzer (Balet
et al., 2019; Ross & Bettge, 2009). The Rapid Visco Ana-
lyzer (RVA) was developed as a more accurate and infor-
mative alternative to the FN method (Ross et al., 1987). As
originally designed, the RVA imitated the cooking process
in the FN by stirring a ground meal–water mixture with a
paddle at 96◦C. The instrument reported a “Stirring Num-
ber” (SN) derived from the power required to maintain a
constant paddle velocity. SN was approximately equal to 1
cP. SN is an Approved Method (22-08) of the AACCI. Like
the FN, SN is affected by the action of α-amylase on starch
pasting. The SN shows a high positive correlation with FN
(r2 = .97) (Ross et al., 1987). The RVA can also detect differ-
ences in the ratio of the two component macromolecules
of starch, amylopectin, and amylose, thus making it more
versatile than the FN instrument (Walker et al., 1988; Zeng
et al., 1997). While the RVA has not widely replaced FN in
the international wheat trade, it has been adopted for the
wheat and barley trade in Australia and starch analysis in
other cereal grains, including maize, barley, sorghum, and
rice (Balet et al., 2019; Gelin et al., 2007). Although the RVA
ismore informative and accurate inmeasuring true viscos-
ity than the FNmethod, it still requires milling of the sam-
ple and costly, specialized equipment.
The FN test is under increased scrutiny because it is

costly, labor intensive, time consuming, requires special-
ized equipment and experienced practitioners, and can
produce variable results (Bettge, 2018; Chang et al., 2002;
Delwiche et al., 2015). A trained technician can run 100–
200 samples per week, starting with the grinding process.
Variation in FN data can arise from users’ testingmethods,
sampling, and FN machine bias, as well as environmen-
tal and biological causes (Delwiche, Higginbotham, et al.,
2018; Delwiche, Rausch, et al., 2020; Delwiche, Tao, et al.,
2020; Delwiche & Vinyard, 2017; Delwiche et al., 2015;
Risius et al., 2015). Collectively, in the United States, these
issues resulted in industry stakeholders requesting that



Alternatives to Hagberg Falling Number 3

the USDA Agricultural Marketing Service (AMS) reduce
variation in the FN test (Coale, 2019). The USDA FGIS
directive was recently updated (May 2020) in an effort to
decrease FN variability through improved standardization.
The standard method now includes correction for grain
moisture content and for barometric pressure during the
procedure (Delwiche, Rausch, et al., 2018; Delwiche et al.,
2015).
The standardized FN test generates a variation about

± 30 seconds. However, the discount is strictly applied to
measurements below 300 despite the questionable accu-
racy of the measurements. Traders then attempt to blend
low FN grain into high FN grain to meet the global con-
tract, but blending low FN wheat into sound grain is not
a linear function. Loss of crop value can result from inad-
vertent inter-mixing at many stages, including during har-
vest; during transport in trucks, barges, trains, and ships;
or during storage in elevators. Since enzymes are catalysts,
a large amount of sound (high FN) grain can be ruined by
mixing with a small amount of low FN grain. For example,
a single sprouted kernel, whenmixedwith 2600 sound ker-
nels as representative of a wheat lot, can result in the lot
failing to meet minimum FN specifications (PNW, n.d.).
While marketers are able to blend some lower FN grain
with sound grain, a great deal of sound grain is needed,
and marketers must take into account the non-linear rela-
tionship between α-amylase activity and FN.

1.1 Differentiation between PHS and
LMA

Resistance to low FN is genetically complex because there
aremultiple causes of low FN including preharvest sprout-
ing, late maturity α-amylase (LMA), and variation in ker-
nel starch and protein (Sjoberg et al., 2020). During ger-
mination, α-amylase levels increase, so that starch in the
endosperm can be mobilized as a nutrient for the ger-
minating seedling (Fincher, 1989). Starch mobilization is
particularly needed when grain is planted deeply to pro-
vide energy for growth until the seedling is able to per-
form photosynthesis upon emerging from the soil (Hor-
gan et al., 2021). Thus, breeders must select for appropri-
ateα-amylase expression rather than for complete absence,
which is challenging under both cases of low FN, PHS, and
LMA.
The majority of PHS tolerance has been attributed to

higher seed dormancy, the inability to germinate until dor-
mancy is broken by after ripening during dry storage or by
exposure to cool, wet conditions (Finkelstein et al., 2008;
Rodriguez et al., 2015). PHS resistance is usually selected
based on reduced visible sprouting/germination during
misting. However, the degree of visible sprouting does not

always correlate well with lower FN after rain (Barnard,
2001; Martinez et al., 2018). PHS causes α-amylase expres-
sion during germination, whereas LMA results from α-
amylase expression during the late maturation stage of
grain development (Derkx & Mares, 2020). LMA is trig-
gered not by rain, but by continuous cool or fluctuating
temperatures during grainmaturation (Barrero et al., 2020;
Derkx & Mares, 2020; Farrell & Kettlewell, 2008; Liu, Tut-
tle, et al., 2021). While first identified in UK and Aus-
tralian wheat, LMA susceptibility has been observed in
wheat from China, Germany, Canada, CIMMYT, andmul-
tiple U.S. breeding programs (Börner et al., 2018; Farrell &
Kettlewell, 2008; Liu, Parveen, et al., 2021; Mares & Mrva,
2008; Neoh, Tao, et al., 2021). It is even more critical to
select for resistance to latematurity alpha-amylase because
LMA is not associated with sprouting or other visible phe-
notypes (Farrell & Kettlewell, 2008; Mares & Mrva, 2014).
The expression of α-amylase is not the only factor

impacting FN and end-product quality. For an example,
mutations in the wheat granule-bound starch synthase
(waxy) genes result in a reduction in amylose compared
to amylopectin, and in altered pasting or gelatinization
properties including a higher hot past viscosity (Zeng
et al., 1997). When all three homeoloci are non-functional,
starch with no amylose is considered “fully waxy” (Gray-
bosch et al., 2000). Sound, fully waxy wheat cultivars have
a low FN without the expression of α-amylase. Protein
content also affects FN. The lower protein levels found
in soft wheat can result in a lower FN without α-amylase
expression (Ross et al., 2012). Therefore, the FN method
may not be the ideal approach for judging end-use quality,
as much depends on the wheat market class and the
intended end-product.
Although both PHS and LMA cause low FN, they influ-

ence end-product differently. Recent evidence suggests
that low FN from PHS has a stronger negative impact on
bread, cake, noodle, and white sauce quality than from
LMA (Kiszonas et al., 2018; Neoh, Dieters, et al., 2021;
Newberry et al., 2018; J.-P. Ral et al., 2016; J. P. F. Ral
et al., 2018). There is lack of correlation between LMA FN
and end-product quality (Neoh et al., 2020). It is question-
able if there is a correlation, especially when α-amylase
level is not very high (Cannon et al., 2021). Although both
PHS and LMA result in elevated high pI α-amylase levels,
LMA results in TaAmy1 mRNA induction, whereas PHS
results in the induction of TaAmy1, TaAmy2, and TaAmy4
transcripts (Barrero et al., 2013; Mieog et al., 2017). More-
over, PHS is associated with the induction of a wide range
of hydrolytic enzymes, including lipases, proteases, and
cell wall degrading enzymes (Ali & Elozeiri, 2017). These
hydrolytic enzymes may contribute to the negative effect
on end-product quality. A method to differentiate PHS
from LMAwould be useful in plant breeding to determine
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which problem led to low FN in a particular field trial so
that the value of LMA-affected grain can be preserved.
There are several differences between LMA and PHS

that could be exploited to differentiate the two problems.
Although both PHS and LMA cause α-amylase expres-
sion in the aleurone layer of the grain, the location of α-
amylase expression in the aleurone differs. During PHS,
α-amylase expression in the aleurone cell layer starts at
the embryo-proximal end and spreads towards the dis-
tal (brush) end of the grain (Bewley, 1997). As a result,
there is much more α-amylase expression at the embryo-
proximal end of the grain. During germination, living aleu-
rone cells lyse after hydrolytic enzyme secretion, releasing
hydrolytic enzymes for mobilization of stored reserves in
the endosperm (Bethke et al., 1999; Fath et al., 2000). In
the case of LMA, α-amylase activity is evenly distributed
throughout the aleurone layer (Mrva et al., 2006). It is
possible to differentiate PHS and LMA by measuring α-
amylase activity in half-grains prepared by equatorial slic-
ing (Mrva & Mares, 1996). If the α-amylase levels are sig-
nificantly higher in the embryo proximal half than in the
distal half, the cause is PHS. Less is known about the bio-
chemical mechanisms controlling cell death during LMA
and whether they are exactly the same as those observed
during germination (Cannon et al., 2021). Studies of LMA-
susceptible wheat lines suggested that LMA induction was
associated with randomly spaced patches of cell death
throughout the distal-to-proximal length of the aleurone
layer, suggesting that α-amylase induction during LMA is
associated with programmed cell death just as it is during
germination (Mrva et al., 2006).

1.2 α-Amylase assays and
immunoassays

Whereas the FN and RVA are examples of autolytic assays
that indirectly measure α-amylase activity on starch from
the kernel based on reduced pasting capacity, α-amylase
enzyme assays measure activity specifically through the
release of chromogenic molecules covalently linked to
starch substrates (i.e., AACC approved methods 22-02-
01 and 22-05-01) (AACC 22-02-01, 2000; AACC22-05-01,
2000). Wheat α-amylase enzymes catalyze the hydrolysis
of α-D-1,4-glucosidic bonds in starch and related polysac-
charides to yield shorter polysaccharides such asmaltodex-
trins, or the disaccharides maltose and maltodextrin (Ju
et al., 2019; Mieog et al., 2017). Commonly used colori-
metric α-amylase enzyme assays include the Ceralpha™
and SD™ assays from Megazyme, and the Phadebas™
Amylase Test (Barnes & Blakeney, 1974; Cornaggia et al.,
2016; Hsu &Varriano-Marston, 1983; McCleary et al., 2002;
McCleary & Sheehan, 1987; McKie & McCleary, 2015).

As α-amylase catalyzes α-glycosidic bond cleavage in the
labeled starch substrate, a dye is released into solution.
The intensity of the color produced during the reaction
positively correlates with the α-amylase enzyme activity of
the sample (Barnes & Blakeney, 1974; Mares et al., 1994;
Mares & Mrva, 2008; McCleary & Sheehan, 1987; McKie &
McCleary, 2015). The substrates used in α-amylase enzyme
assays are resistant to cleavage by β-amylase, improving
specificity for α-amylase. Colorimetric α-amylase enzyme
assays are sensitive, quantitative, and have been adapted
to work with high-throughput screening platforms such as
96-well assays and a robotic platform for the Megazyme™
SD assay (Kiszonas et al., 2018; McKie & McCleary, 2015).
This is an improvement over the FN method which tests
two samples at a time. However, care is needed to obtain
consistent results because small differences in pH, incuba-
tion time, or incubation temperature can cause significant
run-to-run variation in these assays (Barnes & Blakeney,
1974). Although α-amylase enzyme assays cannot distin-
guish between independent isozymes of α-amylase, these
assays can be used to distinguish between LMA and PHS
as the source of α-amylase expression when performed on
half-grain samples, something not possible with the FN
test due to larger sample size requirement of 7 g or more
of milled material (Barrero et al., 2013; Mieog et al., 2017;
Mrva & Mares, 1996).
Unlike enzyme assays, which measure protein lev-

els indirectly through enzyme activity, immunoassays,
including lateral flow assays (LFAs) and enzyme linked
immunosorbent assays (ELISAs), are highly sensitive
assays that measure target protein levels directly (Engvall
& Perlmann, 1971). Immunoassays depend on the specific
protein–protein interaction between antibody and antigen
to detect the presence of the antigen in a protein extract
(Aydin, 2015; Sela-Culang et al., 2013). Since their devel-
opment, immunoassays including LFAs and ELISAs have
been used ubiquitously to characterize the regulation of
biological processes across diverse living systems, includ-
ing the characterization of α-amylase in wheat (Aydin,
2015; Skerritt & Heywood, 2000). Immunoassays can be
performed rapidly, in as little as 5 min and can be designed
in high throughput 96-well formats.
The first antibodies to individual wheat α-amylaseswere

developed to understand α-amylase protein function dur-
ing grain development and germination and to character-
ize tissue specificity and enzyme ontology (Daussant &
Renard, 1987). Early work using isoelectric focusing gels
found that high pI (pI of 5.5 to 7.0) α-amylases are specif-
ically induced during germination or LMA, whereas low
pI α-amylases (pI of 3.5 to 5.5) are not (Mares & Mrva,
2014; Verity et al., 1999). The first ELISA developed to iden-
tify grain impacted by PHS used antibodies raised to puri-
fied, high-pI α-amylases (pI 6.0 to 7.0). This ELISA appears
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to detect the α-amylase isoform encoded by the TaAMY1
gene, which is expressed during PHS or LMA (Barrero
et al., 2013). Based on sequences provided in the original
patent, the specific epitopes detected by the monoclonal
antibodies used in this ELISA are found in both TaAmy1
and TaAmy2 (Skerritt, 2010). A 5-min, field-based assay
was developed to estimate FN, and two productswere com-
mercialized in Australia from these pioneering efforts, the
WheatRite lateral flow immunoassay (LFA) and the Read-
rite immunonoscanner for reading the signal (Skerritt &
Heywood, 2000). The benefits of the WheatRite/Readrite
technologies were that they had the potential to improve
screening accessibility, efficiency, and accuracy through
on-farm testing, reduced sample processing time (5 min
or less), and reduced sample size requirements, requir-
ing only milligram quantities of milled grain versus gram
quantities as in the FN test (Barrero et al., 2013; Sker-
ritt, 2010; Skerritt & Heywood, 2000). Unfortunately, the
WheatRite LFA and Readrite immunoscanner were not
madewidely available to the global grain industry, and nei-
ther tool is currently commercially available.
Since the development of the first wheat α-amylase

antibodies more than 30 years ago, collective research
efforts have continued to clarify and define distinct roles
for the four classes of α-amylase isozymes in wheat and
identify their functions and impact on end-use quality
(Mares & Mrva, 2014; Mieog et al., 2017). The construc-
tion of ELISAs using monoclonal antibodies to wheat α-
amylases may play an important role in improving end-
use screening platforms, as they are capable of addressing
many of the shortcomings associated with the FN test, α-
amylase enzyme activity assays, and ELISAs that are not
specific for wheat α-amylases. Recent efforts evaluating a
96-well LMA-centric ELISA demonstrated a high corre-
lated total α-amylase activity (R = .95) (Neoh, Tao, et al.,
2021). This result is important and powerful because it
links α-amylase activity to a specific α-amylase isozyme,
high pI α-amylase, and to the genetic cause, LMA. Unlike
the aforementioned tests which are not specific, wheat
α-amylase ELISAs will provide a consistent and reliable
method that is not only complementary to both the FN
test and α-amylase enzyme activity assays, but can be
used to (1) monitor specific changes in α-amylase protein
abundance in diverse germplasm and across a broad spec-
trum of sample types, (2) determine differential expres-
sion of α-amylase isozymes occurring with LMA or PHS
and at specific developmental time points, and (3) evalu-
ate changes in α-amylase protein expression in response to
extreme environmental conditions. As a result, α-amylase
ELISAs have the potential to become a valuable tool for
researchers, breeders, and growers alike.

1.3 Spectroscopy for falling number

Spectroscopy of either milled or whole kernels is an
attractive approach for estimating FNs because it is a
non-destructive, higher throughput approach that can be
adapted for use on a combine or at a grain elevator and
requires little or no sample preparation (Risius et al., 2015).
Such an approach could enable faster identification of low
FN samples in early generation breeding lines, thereby
improving selection against low FN susceptibility. It could
also help to preserve value if used to segregate lowFNgrain
in the wheat industry.
To understand how spectroscopy, specifically near-

infrared (NIR) transmission or reflection spectroscopy,
might be used to measure FN, a look at some basic prin-
ciples of this technology is required. NIR spectroscopy,
as well as the related fields of mid-infrared (mid-IR) and
Raman spectroscopy, are considered vibrational spectro-
scopies. Vibrations between bonded atoms occur when the
energy of a photon matches the difference between the
energy levels of two sequential quantum levels of a bond.
The jump between the ground state (υ = 0) and the first
level of excitation (υ = 1) characterizes the fundamen-
tal vibrations that occur as a result of absorptions in the
mid-IR region, 4000 to 400 cm−1 (2500–25,000 nm). On
the other hand, absorptions in the NIR region (10,000–
4000 cm−1 or 1000–2500 nm) require more energy and
are generated from the vibrations of overtones of the fun-
damental frequencies and combinations of interatomic
bonds. Unfortunately, the overtones are not simple multi-
ples of frequencies, thus making qualitative analysis in the
NIR region very challenging. However, quantitative anal-
ysis of organic compounds is often well suited to the NIR
region.
A more complete description of the process of bond

vibration in the NIR region considers the quantum nature
of the behavior. For example, anharmonicity arises due to
the atoms’ dimensions and mass imposing physical limits
on the separation distance between bonded atoms that pre-
vents them from being too close (overlapping) or too dis-
tant (disassociating). Electrical anharmonicity arises from
a non-uniform change in dipole moment as a result of a
change in the distance between bonded atoms. The pres-
ence of anharmonicity can lead to overtone transitions
that arise from a change between non-adjacent vibrational
quantum levels (e.g., |Δυ | > 1), combination bands that
occur when the energy from one photon produces simul-
taneous changes in quantum levels of two or more differ-
ent vibrational modes, and unequal differences between
energy levels of the quantum states (Miller, 2001). These
occurrences would otherwise be forbidden under a set of
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conditions known as selection rules that arise from group
theory in quantum mechanics (Wilson et al., 1955).
The significance of these occurrences becomes apparent

when we shift away from the fundamental vibrations of
the mid-IR region to the overtone and combination vibra-
tions of NIR. To a first approximation, the frequencies
of the overtone bands are integer multiples of the corre-
sponding fundamental frequency, with each higher over-
tone (and shorter wavelength) being weaker than the pre-
ceding. Compared to the fundamental absorption bands of
the mid-IR region, absorption bands of the NIR region are
weak. Therefore, unlike the mid-IR region where dilution
of the test sample is often a necessary step before spectral
collection, samples in the NIR region can be run in “neat”
form, i.e., as a pure substance, such as ground wheat or,
even more convenient, as whole grain, the preferred for-
mat used in commercial protein content NIR analyzers. In
addition, the NIR overtone and combination bands arise
overwhelmingly from bonds involving the lightest atom,
hydrogen. Typically, these include the bonds C–H, O–H,
and N–H, all of which are prevalent in agricultural prod-
ucts such as grain. Hydrogen bonding and neighboring
groups will have secondary effects on the frequency and
magnitude of vibrational bands. Furthermore, overtone or
combination vibrations along the chain, or within a ring
structure, of an organic molecule, are not active in the NIR
region.
Using this very brief description of NIR spectroscopy

principles, we may now consider the direct or indirect
measurement of α-amylase in wheat grain. α-Amylase is
the primary enzyme that influences starch paste viscosity,
and therefore FN. Although low FN is typically attributed
to the endogenous form of the enzyme, it is noted that
FN in sprouted grain increases with the addition of sil-
ver nitrate, an inhibitor of α-amylase activity. This has led
some researchers to theorize that most of the enzymatic
changes to starch occur during heating and hydrolyzation
stages (Olaerts et al., 2016). If true, this theory may explain
the historical challenges confronted by researchers who
have attempted to develop NIR spectroscopy models for
FN.
Nevertheless, the prospect of producing an NIR proce-

dure for measuring FN, α-amylase, or germination-related
changes in the wheat seed has been appealing to the wheat
research community for nearly 40 years. The first explo-
ration of NIR reflectance for FNmeasurement used a spec-
trometer with 19 fixed interference filters and multiple
linear regression (MLR) (Starr et al., 1981). The five-filter
(1778, 1818, 1982, 1940, and 2100 nm) MLR calibration pro-
duced a standard error of 26.8 s for a small calibration set
(n= 45) and 62.3 s for a separate validation set (n= 43). This
increase speaks to the importance of external validation in
order to realistically describe NIR modeling capability.

With a scanning monochromator (1200–2400 nm wave-
length range), the relationship was not confirmed between
FN and sodium dodecyl sulfate (SDS) sedimentation vol-
ume suggesting the pitfall of pseudo correlation (Osborne,
1984). In pseudocorrelation, a positive correlation between
the desired property (FN in this example) and a known
NIR-modelable constituent (e.g., protein content) leads to
a false conclusion that the NIR process is directly sensitive
to the property. Nevertheless, NIR studies on FN have con-
tinued for both α-amylase (Xing et al., 2011) and FN (Capo-
raso et al., 2017) in laboratory conditions and on a com-
bine during harvesting operations for field mapping of FN
(Risius et al., 2015).
In recentwork, partial least squares (PLS) regression cal-

ibrations were established for FN on a genetically diverse
set of Washington-grown white wheat, with the premise
that improvements in FN precision and NIR hardware and
software over the past 30 years may lead to more accurate
NIR models (Delwiche, Higginbotham, et al., 2018). How-
ever, these FN calibrations had standard errors of perfor-
mance ranging from 40 to 77 s, which is larger than those
observed for the FN test. As an alternative approach, these
researchers attempted classification (low/high FN with a
cutoff value) using linear discriminant analysis and PLS
discriminant analysis (PLSDA) qualitative models. Unfor-
tunately, model accuracy was still low, with the best model
correctly identifying 67–71% of the samples in a set of
several hundred. Various linear regression (such as PLS)
and non-linear (support vector machine and random for-
est) algorithms were used for to model wheat flour FN
using NIR reflectance (800–2700 nm) (Junior et al., 2020).
Improvement was attained using the non-linear models;
yet, the root mean squared errors (RMSE), ranging from
57 to 68 s, were on par with previously published results.
To date, NIR model development for FN has been unfruit-
ful, leaving open the possibility of using NIR to explore α-
amylase and seed germination more broadly.
This leaves the following remaining possibilities for a

NIR response: (1) the amount of α-amylase is high enough
to be measured, with the condition that the molecular
structure of α-amylase is spectroscopically distinguishable
from that of the proteins in the endosperm, aleurone layer,
and embryo; or (2) the NIR spectral response is sensitive
to physical changes in the seed that occur during the onset
of germination and result in changes to light scatter in the
seed (for whole kernel transmission) or externally among
the particles produced during grinding (for meal diffuse
reflection). With the first possibility, we assume that levels
of α-amylase are high enough to be measured directly by
NIR. The common isoform of the cereal α-amylase enzyme
synthesized during germination, and best studied in bar-
ley, consists of 403 amino acid residues folded into three
domains, with the largest domain containing 286 residues
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in a (ba) 8-barrel formation which houses the active sites
for starch hydrolysis (Kadziola et al., 1994). Although col-
lectively sensitive to proteins through N–H bond vibra-
tions, the sensitivity of the NIR response to individual
amino acids, let alone their residues, is extremely challeng-
ing. Enzymes are even more challenging because of their
low abundance, in all likelihood precluding the use of NIR
for quantitative analysis (which typically has lower lim-
its of detection in the tenths or hundredths of a percent,
w/w).
If the second possibility is true, then we need to

understand the morphological changes leading up to α-
amylase production and release in the kernel aleurone
layer (Fath et al., 2000). Much of our understanding of α-
amylase induction and cell death of the aleurone layer in
cereals comes from studies of germinating barley grain.
The triploid cereal endosperm is composed of a starchy
endosperm surrounded by the aleurone cell layer. The
starchy endosperm comprises about 70% of the grain vol-
ume and dies at the completion of grain filling. In mature
wheat kernels, the aleurone is a single cell layer of liv-
ing cells that controls the mobilization of starch and
other nutrients during germination through the synthesis
and excretion of hydrolytic enzymes including the starch
degrading enzyme α-amylase. Prior to germination, the
thick-walled aleurone cells contain many protein storage
vacuoles (PSV) that break down during germination, pro-
viding the amino acid building blocks needed for rapid pro-
tein/enzyme synthesis (Bethke et al., 1998). During germi-
nation, the hormone gibberellic acid (GA) triggers a series
of morphological changes in the aleurone that conclude
with cell death (Bethke et al., 1998; Jones & Jacobsen, 1991).
GA triggers the transcription and translation of hydrolytic
enzymes, with α-amylase representing as much as 60% of
the rapidly translated protein within 3 to 4 h of GA per-
ception. The PSV swell following hydrolysis of storage pro-
teins in the PSV lumen, then fuse to form one large vac-
uole that increases in size with longer GA treatment. Prior
to cell lysis, the aleurone secretes hydrolytic enzymes into
the endosperm, and the PSV becomes acidic and fills with
enzymes that have low pH optima. Prior to lysis, aleu-
rone cells become highly vacuolate, mobilize most of their
stored protein, and use those amino acids to synthesize
secreted hydrolases.
The death of aleurone cells is preceded by increased

permeability of the plasma membrane, followed by mem-
brane collapse and cell lysis (Bethke et al., 1999). This pro-
cess should release all remaining hydrolytic enzymes. Cell
walls are digested by glucanases and xylanases secreted
from the aleurone during germination, likely to provide
access to starch contained within endosperm cells. Thus,
whether or not some starch digestion occurs prior to FN
measurement will depend on where the grains are in the

germination process. The study on cellular changes in the
aleurone during LMA suggested that the patches of vac-
uolated cells and of cell death are present following LMA
induction (Mrva et al., 2006). If NIR is not detecting starch
degradation or α-amylase protein itself, then it is possible
that it is detecting the physical and chemical changes in
the PSV, vacuolization, and finally cell lysis. Therefore, it
may be necessary to use multiple wavelengths and com-
plex modeling to develop an accurate calibration. For this
reason, future spectroscopy studies should take care to dif-
ferentiate between LMA- and PHS-affected grains during
calibration development.

1.4 Hyperspectral imaging

Spectral signals from PHS- and LMA-associated compo-
nents may be enhanced with hyperspectral imaging (HSI).
This technique provides spatial and spectral information
about an object of interest, and the spectrum of each pixel
contains hundreds of contiguous bands. HSI data are also
called a data cube because it has three dimensions of pixels.
The first two dimensions are spatial pixels, and each pixel
contains a vector of spectral bands that make up the third
dimension. To generate HSI data, the push broommethod
(Femenias et al., 2020; Sendin et al., 2018), also known as
the line-scanning method, is most commonly used. In this
method, HSI sensors are designed as a two-dimensional
chip. The chip has one dimension collecting spatial signals
and the other dimension collecting a spectrum. Using the
push broom system, only a narrow line of spatial pixels in
an object can be scanned at a time. After each scan, the sen-
sor or the object has to be moved by one unit of distance
in order to scan a new area (Elmasry et al., 2012; Fong &
Wachman, 2008).
In addition to sensors, lighting units and spectrographs

are two additional key components needed to acquire HSI
data. Lighting units are used to illuminate objects of inter-
est and to generate a reflection, which is a mixture of opti-
cal signals. A spectrograph is used to separate different
spectral bands from the mixture by isolating a particular
wavelength range and transmitting this spectrum to the
sensors for scanning. The combination of sensors, spectro-
graphs, and lighting units can limit what range(s) of wave-
lengths are available to be scanned.
In the wheat industry, HSI approaches are mostly used

to improve the assessment of disease and sprout dam-
age. Fusarium Head Blight (FHB), one of the most com-
mon fungal diseases in wheat, can reduce kernel den-
sity and as a result lead to a loss in yield. Both sound
and FHB-damaged kernels can be identified with 96%
accuracy by scanning kernels using short-wave infrared
(SWIR) HSI and modeling them using an FHB-damage
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classifier (Delwiche et al., 2019). HSI data showed that
four effective wavelengths, 1100, 1197, 1308, and 1394 nm,
can predict FHB with 95% accuracy. The usage of wave-
length range between 400 and 1000 nm showed that this
method can predict FHB-damaged kernels with 98% accu-
racy (Zhang et al., 2020). FHB damage can also be quanti-
fied by determining the concentration of deoxynivalenol
(DON), an FHB-induced secondary metabolite in wheat
kernels. HSI was able to identify wheat contaminated with
DONandquantifyDON inwheat sampleswith 73.4% accu-
racy (Femenias et al., 2020).
Since sprouted kernels are less dense than sound ker-

nels, an X-ray imaging approach was used to inspect the
interior structure of wheat and could identify sprout dam-
age with 90% accuracy (Neethirajan et al., 2007). However,
considering the difficulty and risk of taking X-ray images,
thermal images that capture wavelengths over 9000 nm
(i.e., long infrared) are generally used as an alternative.
Sprouted kernels are actively respiring and have higher
temperatures at the surface of the grain. Thermal images
that convert invisible radiation to visible imaging signals
can classify healthy and sprouted kernels with 90% accu-
racy (Vadivambal et al., 2010). A simulated PHS event sug-
gested that there are distinct spectral patterns associated
with different degrees of sprout damage in the endosperm
tissue (Chen et al., 2013). In addition, HSI-driven predic-
tions of α-amylase activity also showed a high coefficient of
determination (r2 = .82) when the enzyme activity ranges
was between 0 and 78 Sandstedt Kneed Blish (SKB) units
(Xing et al., 2009). Furthermore, NIR HSI data have great
sensitivitywhenFN is above 300 s, but this technique is not
reliable enough to identify FN when it is lower or sprout
levels are severe (Barbedo et al., 2018).
Another study attempted to predict FN with field-

collected data. However, the FN prediction accuracy was
relatively low (R2 = .44) (Caporaso et al., 2017). Although
this study used an average across pixels to develop a pre-
dictive model, the pixel-wise prediction demonstrated that
the distribution of FN-associated components had pat-
terns specific to the kernel location, including embryo end,
brush end, and crease. HSI of wheat kernels with PHS
damage identified changes initially at the embryo end that
later spread to larger areas of the kernel. This result sug-
gested that HSI can “see” the effects of PHS. The changes
in the kernel appeared to follow a path from the embryo
end to the brush end. This result suggested that the path
of changes follows the vascular bundle in the grain crease
and that the vascular bundle is serving as a conduit for an
α-amylase-inducing signal from the embryo. This pattern
could enhance the prediction of PHS using artificial intel-
ligence, such as convolutional neural networks. Similar to
the immunoassays using the embryo and brush ends of a
kernel, monitoring the differences between these two ends

could enable HSI to differentiate PHS from LMA (Capo-
raso et al., 2017).

1.5 Advances of analytical models

Pre-processing techniques are required to remove physi-
cal artifacts and improve subsequent analysis from spec-
tral and HSI data (Rinnan et al., 2009). Multiplicative
scatter correction (MSC), de-trending, and standard nor-
mal variate (SNV) are the most commonly used scatter-
correction methods in pre-processing of NIR spectral data
in crop studies (Ahmad et al., 2016; Carbas et al., 2020; Lü
et al., 2017; Sampaio et al., 2018, 2020; Sorvaniemi et al.,
1993; Xing et al., 2011). For an individual sample spec-
trum, zeroth, first, and second Savitzky-Golay (SG) deriva-
tion are commonly used to reduce physical effects such
as light scatter and, for first and second derivatives, to
accentuate component spectral bands from a broad over-
all response, consisting of overlapping individual bands. At
the same time, the operation results in spectral smoothing.
Although defined as a least squares polynomial curve fit-
ting operation, SG operations become mathematical con-
volutions in which the derivative window size determines
the degree of smoothing. Larger windows (e.g., seven or
more adjacent wavelengths) result in greater smoothing at
the expense of lessening spectral resolution (Delwiche &
Reeves III, 2010). Other pre-processing methods such as
generalized least square weighting (GLSW) (Ahmad et al.,
2016), enhanced multiplicative scatter correction, area
normalization, automatic weighted least squares (AWLS)
baseline, and automaticWhittaker filter baseline have also
been applied in crop studies (Lü et al., 2017; Xing et al.,
2011).
Linear regression models, including PLS, and extension

models, competitive adaptive reweighted squares, and
single linear regression, are commonly used to ana-
lyze infrared spectra data. PLS is a statistical method that
assumes there is a linear relationship between components
and phenotypic features. The PLS method evaluates coef-
ficients by iteratively seeking the lowest value of the root
mean squared errors in the prediction. A previous effort
(Armstrong et al., 2016) has been put to use PLS analyze
spectrum from single-kernel NIR spectroscopy and silicon
light-emitting diode sorter. Their results showed that
spectral averages from 30 kernels scanned by single-kernel
NIR spectrum could increase R2 to .95 from .78, where the
analysis considers one wheat kernel spectrum as a data
entry. A combination ofMSC and PLS is applied to analyze
wheat flour spectra data collected through fusing a Fourier
transform near-infrared spectroscopy (FT-NIR), resulting
in R2 value of .55 (Sorvaniemi et al., 1993). Similarly,
another study performed de-trending, GLSW, and MSC
to preprocess wheat flour spectra collected using fluores-
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cence spectroscopy, genetic algorithm to extract significant
spectra features and PLS for FN prediction. The result
shows an R2 value of .48 (Ahmad et al., 2016). A study
compared PLS with partial least squares discriminant
analysis (PLSDA) to predict α-amylase activity, results
indicate that R2 of PLS ranges from .56 to .69, while using
PLSDA for limited wavelengths achieved accuracy of 91%
of α-amylase activity classification (Symons et al., 2010).
PLS extension models, such as interval PLS, synergy

PLS, and moving window PLS, have been used to analyze
rice amylose content (Sampaio et al., 2018). Other models,
such as artificial neural networks, have been used to ana-
lyze NIR spectra of wheat flour (Mutlu et al., 2011). Arti-
ficial intelligence algorithms, such as genetic algorithms,
have been shown to optimize PLS prediction by select-
ing the significant spectral blocks from a wheat kernel
NIR spectrum (Lü et al., 2017). No difference was found
between spectral data collected from a short-wavelength
infrared (SWIR) HSI system and data collected from FT-
NIR instruments for α-amylase activity prediction (Xing
et al., 2011).

2 PROSPECTS

Developed in the 1960s based on viscosity, the Hagberg–
Perten FN method is still the international standard
method to access wheat damage due to PHS and LAM
across the entire production chain, including breeding,
harvesting, storage, transportation, milling, and baking.
The method is laboriously slow, vulnerable to grain sam-
pling variation, inconveniently demanding for expensive
lab equipment, and unable to differentiate the two major
genetic causes that influence end-use quality differently.
Low FN due to LMA has less impact on end-use quality
than PHS, which also degrades protein in addition to
starch. Although none of the FN alternatives has reached
the stage to replace the current method, some of them
demonstrated great potential or provide complementary
solutions. Not only are α-amylase enzyme assays and
immunoassays fairly fast at examining starch damage due
to α-amylase in typical laboratory settings but also able to
differentiate PHS and LMA bymeasuring α-amylase activ-
ity in half-grains. LMA has similar activity between the
distal and embryo halves, while PHS has more activities
in the embryo half than in the distal half. Spectroscopy,
especially HSI, has the advantage of directly screening
intact grains without destroying the grain. α-Amylase
enzyme assays and immunoassays are preferred over
the FN method to develop prediction models, as the FN
method is not capable to produce measurements on a
single grain. The images on individual grains provide the
opportunities to develop machine vision systems for real-

time screening to segment grains at different stages. For
example, a harvester with such a system would prevent
the contamination of sound grain from the damaged gains
in the first place. Benjamin Franklin, one of the founding
fathers of the United States, famously advised in 1736,
“An ounce of prevention is worth a pound of cure.” The
best solution to the economic pain of PHS and LMA is to
breed more resistant (or less susceptible) cultivars. The
development of FN alternatives not only promotes the
wheat trade but also provides tools in breeding programs.
More rapid and accurate screening in breeding programs
translates to fewer opportunities for large-scale PHS/LMA
events that affect the global wheat industry.
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